Abstract
Short text matching is a key problem in natural language processing (NLP), which can be applied in journalism, military, and other fields. In this paper, we propose an optimized Chinese short text matching algorithm based on external knowledge (OTE). OTE can effectively eliminate semantic ambiguity in Chinese text by integrating the HowNet external knowledge base. We use SoftLexicon to optimize the word lattice graph to provide more comprehensive multi-granularity information and integrate the LaserTagger model and EDA for data augmentation. Experimental results show that OTE has an average accuracy improvement of 1.5% in three datasets compared with existing models.
Supported by the Ministry of Science and Technology of China (No. 2020AAA0105100).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Tan, M., Dos Santos, C., Xiang, B., Zhou, B.: Improved representation learning for question answer matching. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 464–473 (2016)
Chen, H.: Personalized recommendation system of e-commerce based on big data analysis. J. Interdisc. Math. 21, 1243–1247 (2018)
Kilimci, Z., Omurca, S.: Extended feature spaces based classifier ensembles for sentiment analysis of short texts. Inf. Tech. Control. 47(3), 457–470 (2018)
Chen, L., et al.: Neural graph matching networks for Chinese short text matching. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 6152–6158 (2020)
Ma, R., Peng, M., Zhang, Q., Huang, X.: Simplify the usage of lexicon in Chinese NER. arXiv preprint arXiv:1908.05969 (2019)
Zhang, Y., Wang, Y., Yang, J.: Lattice LSTM for Chinese sentence representation. IEEE/ACM Trans. Audio Speech Lang. Process. 28, 1506–1519 (2020)
Xu, J., Liu, J., Zhang, L., Li, Z., Chen, H.: Improve Chinese word embeddings by exploiting internal structure. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1041–1050 (2016)
Dong, Z., Dong, Q.: HowNet-a hybrid language and knowledge resource. In: International Conference on Natural Language Processing and Knowledge Engineering, 2003, Proceedings. 2003, pp. 820–824. IEEE (2003)
Wei, J., Zou, K.: EDA: easy data augmentation techniques for boosting performance on text classification tasks. arXiv preprint: arXiv:1901.11196 (2019)
Malmi, E., Krause, S., Rothe, S., Mirylenka, D., Severyn, A.: Encode, tag, realize: high-precision text editing. arXiv preprint arXiv:1909.01187 (2019)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding (2018)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)
Liu, Y., et al.: RoBERTa: a robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692 (2019)
Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: ALBERT: a lite BERT for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942 (2019)
Zhang, Z., Han, X., Liu, Z., Jiang, X., Sun, M., Liu, Q.: ERNIE: enhanced language representation with informative entities. arXiv preprint arXiv:1905.07129 (2019)
Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V.: XLNet: generalized autoregressive pretraining for language understanding. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text classification. Adv. Neural Inf. Process. Syst. 28, 649–657 (2015)
Sennrich, R., Haddow, B., Birch, A.: Improving neural machine translation models with monolingual data. arXiv preprint arXiv:1511.06709 (2015)
Xie, Q., Dai, Z., Hovy, E., Luong, M.-T., Le, Q.V.: Unsupervised data augmentation for consistency training. arXiv preprint arXiv:1904.12848 (2019)
Kobayashi, S.: Contextual augmentation: data augmentation by words with paradigmatic relations. arXiv preprint arXiv:1805.06201 (2018)
Hu, Z., Yang, Z., Liang, X., Salakhutdinov, R., Xing, E.P.: Toward controlled generation of text. In: International Conference on Machine Learning, PMLR, pp. 1587–1596 (2017)
Zhang, Y., Yang, J.: Chinese NER using lattice LSTM. arXiv preprint arXiv:1805.02023 (2018)
Lai, Y., Feng, Y., Yu, X., Wang, Z., Xu, K., Zhao, D.: Lattice CNNs for matching based Chinese question answering. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 6634–6641 (2019)
Lyu, B., Chen, L., Zhu, S., Yu, K.: LET: linguistic knowledge enhanced graph transformer for Chinese short text matching. arXiv preprint arXiv:2102.12671 (2021)
Hirschberg, D.S.: Algorithms for the longest common subsequence problem. J. ACM (JACM). 24, 664–675 (1977)
Xu, L., Zhang, X., Dong, Q.: CLUECorpus2020: a large-scale Chinese corpus for pre-training language model. arXiv preprint arXiv:2003.01355 (2020)
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)
Shen, T., Zhou, T., Long, G., Jiang, J., Pan, S., Zhang, C.: DiSAN: directional self-attention network for RNN/CNN-free language understanding. In: Proceedings of the AAAI Conference on Artificial Intelligence (2018)
Niu, Y., Xie, R., Liu, Z., Sun, M.: Improved word representation learning with sememes. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2049–2058 (2017)
Caruana, R.: Learning many related tasks at the same time with backpropagation. In: Advances in Neural Information Processing Systems, pp. 657–664 (1995)
Wang, Z., Hamza, W., Florian, R.: Bilateral multi-perspective matching for natural language sentences. arXiv preprint arXiv:1702.03814 (2017)
Liu, X., Chen, Q., Deng, C., Zeng, H., Chen, J., Li, D., Tang, B.: LCQMC: a large-scale Chinese question matching corpus. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 1952–1962 (2018)
Chen, J., Chen, Q., Liu, X., Yang, H., Lu, D., Tang, B.: The BQ corpus: a large-scale domain-specific Chinese corpus for sentence semantic equivalence identification. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 4946–4951 (2018)
Mueller, J., Thyagarajan, A.: Siamese recurrent architectures for learning sentence similarity. In: Proceedings of the AAAI Conference on Artificial Intelligence (2016)
Cui, Y., et al.: Pre-training with whole word masking for Chinese BERT. arXiv arxiv:1906.08101 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ma, H., Ding, Z., Li, Z., Guo, H. (2022). OTE: An Optimized Chinese Short Text Matching Algorithm Based on External Knowledge. In: Memmi, G., Yang, B., Kong, L., Zhang, T., Qiu, M. (eds) Knowledge Science, Engineering and Management. KSEM 2022. Lecture Notes in Computer Science(), vol 13368. Springer, Cham. https://doi.org/10.1007/978-3-031-10983-6_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-10983-6_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-10982-9
Online ISBN: 978-3-031-10983-6
eBook Packages: Computer ScienceComputer Science (R0)