Abstract
Albedo quantifies the capacity of a certain surface to reflect incident solar radiation. Therefore, this parameter is relevant in environmental and climate studies as it drives both the land surface energy balance and the interaction between surfaces and atmosphere. It can be estimated and monitored at different scales using Remote Sensing technique. However, its assessment is pretty difficult as factors, such as resultant map accuracy, processing time, and complexity of the algorithm used to retrieve it, should be considered.
The goal of this paper is to develop a proper JavaScript code in Google Earth Engine cloud environment in order to estimate surface albedo using two different satellite data, Landsat 8 and Sentinel-2, over two different study areas: Bari (Southern Italy), and Berlin (Northeastern Germany). To achieve this purpose, Landsat 8 and Sentinel-2 images, acquired in close date, were processed in GEE environment by implementing an appropriate JavaScript code. After obtaining albedo maps over both investigated sites, the two algorithms’ performances, the Silva for Landsat 8 data and the Bonafoni for Sentinel-2 images, were statistically analyzed and compared. Furthermore, to investigate the outcomes deeply, statistics metrics were computed for different land cover classes also. UrbanAtlas provided by Copernicus was used to classify the whole case studies. Both approaches showed satisfying results albeit Landsat 8 algorithm provided higher mean values than the other one.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Liu, Q., Wen, J., Qu, Y., He, T., Zhang, X., Wang, L.: Broadband albedo. In: Liang, S., Li, X., Wang, J. (eds.) Advanced Remote Sensing: Terrestrial Information Extraction and Applications, 1st edn, pp. 173–231. Academic Press, Cambridge (2012)
Capolupo, A., Monterisi, C., Barletta, C., Tarantino, E.: Google earth engine for land surface albedo estimation: comparison among different algorithms. In: Proceedings of SPIE 11856, Remote Sensing for Agriculture, Ecosystems, and Hydrology XXIII, p. 118560F. International Society for Optics and Photonics (2021)
Essential Climate Variables. https://gcos.wmo.int/en/essential-climate-variables. Accessed 28 Nov 2021
Voogt, J.A., Oke, T.R.: Thermal remote sensing of urban climates. Remote Sens. Environ. 86(3), 370–384 (2003)
The Urban Heat Island (UHI) Effect. https://www.urbanheatislands.com/. Accessed 13 Dec 2021
Sangiorgio, V., Capolupo, A., Tarantino, E., Fiorito, F., Santamouris, M.: Evaluation of absolute maximum urban heat island intensity based on a simplified remote sensing approach. Environ. Eng. Sci. 39(3), 296–307 (2022)
Capolupo, A., Monterisi, C., Saponaro, M., Tarantino, E.: Multi-temporal analysis of land cover changes using Landsat data through google earth engine platform. In: Proceedings of SPIE 11524, Eighth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2020), pp. 1152419. International Society for Optics and Photonics (2020)
Capolupo, A., Boccia, L.: Innovative method for linking anthropisation process to vulnerability. World Rev. Sci. Technol. Sustain. Dev. 17(1), 4–22 (2021)
Trlica, A., Hutyra, L.R., Schaaf, C.L., Erb, A., Wang, J.A.: Albedo, land cover, and daytime surface temperature variation across an urbanized landscape. Earth’s Future 5, 1084–1101 (2017)
Lama, G.F.C., Sadeghifar, T., Azad, M.T., Sihag, P., Kisi, O.: On the indirect estimation of wind wave heights over the Southern Coast of Caspian sea: a comparative analysis. Water 14(6), 843 (2022)
Lama, G.F.C., Crimaldi, M.: Remote sensing of ecohydrological, ecohydraulic, and ecohydrodynamic phenomena in vegetated waterways: the role of leaf area index (LAI). Biol. Life Sci. Forum 3(1), 54 (2021)
Sadeghifar, T., Lama, G.F.C., Sihag, P., Bayram, A., Kisi, O.: Wave height predictions in complex sea flows through soft-computing models: case study of Persian Gulf. Ocean Eng. 245, 110467 (2022)
Esposito, M., Crimaldi, M., Cirillo, V., Sarghini, F., Maggio, A.: Drone and sensor technology for sustainable weed management: a review. Chem. Biol. Technol. Agric. 8(1), 1–11 (2021). https://doi.org/10.1186/s40538-021-00217-8
Capolupo, A., Monterisi, C., Sonnessa, A., Caporusso, G., Tarantino, E.: Modeling land cover impact on albedo changes in google earth engine environment. In: Gervasi, O., et al. (eds.) ICCSA 2021. LNCS, vol. 12955, pp. 89–101. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87007-2_7
Liang, S.: Narrowband to broadband conversions of land surface albedo I algorithms. Remote Sens. Environ. 76, 210–238 (2000)
Tarantino, E.: Monitoring spatial and temporal distribution of sea surface temperature with TIR sensor data. Italian J. Remote Sens. 44(1), 97–107 (2012)
Caprioli, M., Tarantino, E.: Identification of land cover alterations in the Alta Murgia National Park (Italy) with VHR satellite imagery. Int. J. Sustain. Dev. Plan. 1(3), 261–270 (2006)
Capolupo, A., Saponaro, M., Fratino, U., Tarantino, E.: Detection of spatio-temporal changes of vegetation in coastal areas subjected to soil erosion issue. Aquat. Ecosyst. Health Manag. 23(4), 491–499 (2020)
Sarzana, T., Maltese, A., Capolupo, A., Tarantino, E.: Post-processing of pixel and object-based land cover classifications of very high spatial resolution images. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12252, pp. 797–812. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58811-3_57
da Silva, B.B., Braga, A.C., Braga, C.C., de Oliveira, L.M.M., Montenegro, S.M.G.L., Barbosa, J.B.: Procedures for calculation of the Albedo with OLI-Landsat 8 images: application to the Brazilian semi-arid. Revista Brasileira de Engenharia Agrícola e Ambiental 20, 3–8 (2016)
Varghese, D., Radulović, M., Stojković, S., Crnojević, V.: Reviewing the potential of Sentinel-2 in assessing the drought. Remote Sens. 13(17), 3355 (2021)
Vanino, S., et al.: Capability of Sentinel-2 data for estimating maximum evapotranspiration and irrigation requirements for tomato crop in Central Italy. Remote Sens. Environ. 215, 452–470 (2018)
Bonafoni, S., Sekertekin, A.: Albedo retrieval from Sentinel-2 by new narrow-to-broadband conversion coefficient. IEEE Geosci. Remote Sens. Lett. 17(9), 1618–1622 (2020)
Hird, J.N., DeLancey, E.R., McDermid, G.J., Kariyeva, J.: Google earth engine, open-access satellite data, and machine learning in support of large-area probabilistic wetland mapping. Remote Sensing 9(12), 1315 (2017)
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R.: Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017)
Martinelli, A., Kolokotsa, D.-D., Fiorito, F.: Urban heat island in Mediterranean coastal cities: the case of Bari (Italy). Climate 8(6), 79 (2020)
Leone, A., Gobattoni, F., Pelorosso, R., Calace, F.: Nature-based climate adaptation for compact cities: green courtyards as urban cool islands. Plurimondi 18, 83–110 (2020)
Peschechera, G., Tarantino, E., Fratino, U.: Crop water requirements estimation at irrigation district scale from remote sensing: a comparison between MODIS ET product and the analytical approach. In: Proceedings of SPIE 10773, Sixth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2018), p. 1077318. International Society for Optics and Photonics (2018)
Tarantino, E., Novelli, A., Aquilino, M., Figorito, B., Fratino, U.: Comparing the MLC and JavaNNS approaches in classifying multi-temporal LANDSAT satellite imagery over an ephemeral river area. Int. J. Agric. Environ. Inf. Syst. (IJAEIS) 6(4), 83–102 (2015)
Vulova, S., Meier, F., Fenner, D., Nouri, H., Kleinschmit, B.: Summer nights in Berlin, Germany: modeling air temperature spatially with remote sensing, crowdsourced weather data, and machine learning. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 13, 5074–5087 (2020)
Dugord, P.-A., Lauf, S., Schuster, C., Kleinschmit, B.: Land use patterns, temperature distribution, and potential heat stress risk – the case study Berlin, Germany. Comput. Environ. Urban Syst. 48, 86–98 (2014)
Kühn, M., Gailing, L.: From green belts to regional parks: history and challenges of suburban landscape planning in Berlin. In: Amati, M. (ed.) Urban Green Belts in the Twenty-first Century, Chapter 10, pp. 185–202. Ashgate (2008)
Li, H., et al.: A new method to quantify surface urban heat island intensity. Sci. Tot. Environ. 624, 262–272 (2018)
Urban Atlas 2018. https://land.copernicus.eu/local/urban-atlas/urban-atlas-2018. Accessed 26 Feb 2022
Allen, R.G., Tasumi, M., Trezza, R.: Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) – model. J. Irrig. Drain. Eng. 133(4), 380–394 (2007)
Taha, H.: Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat. Energy Build. 25, 99–103 (1997)
Waters, R., Allen, R., Tasumi, M., Trezza, R., Bastiaanssen, W.: SEBAL (surface energy balance algorithms for land). Idaho implementation. In: Advanced Training and Users Manual. Version 1.0 (2002)
Lai, S., Leone, F., Zoppi, C.: Spatial distribution of surface temperature and land cover: a study concerning Sardinia, Italy. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12253, pp. 405–420. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58814-4_29
Crocetto, N., Tarantino, E.: A class-oriented strategy for features extraction from multidate ASTER imagery. Remote Sens. 1(4), 1171–1189 (2009)
Novelli, A., Tarantino, E., Caradonna, G., Apollonio, C., Balacco, G., Piccinni, F.: Improving the ANN classification accuracy of Landsat data through spectral indices and linear transformations (PCA and TCT) aimed at LU/LC monitoring of a River Basin. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9787, pp. 420–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42108-7_32
Boccia, L., Capolupo, A., Rigillo, M., Russo, V.: Terrace abandonment hazards in a Mediterranean cultural landscape. J. Hazardous Toxic Radioactive Waste 24(1) (2020)
Capolupo, A., Monterisi, C., Caporusso, G., Tarantino, E.: Extracting land cover data using GEE: a review of the classification indices. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12252, pp. 782–796. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58811-3_56
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Barletta, C., Capolupo, A., Tarantino, E. (2022). Exploring the Potentialities of Landsat 8 and Sentinel-2 Satellite Data for Estimating the Land Surface Albedo in Urban Areas Using GEE Platform. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds) Computational Science and Its Applications – ICCSA 2022 Workshops. ICCSA 2022. Lecture Notes in Computer Science, vol 13379. Springer, Cham. https://doi.org/10.1007/978-3-031-10545-6_30
Download citation
DOI: https://doi.org/10.1007/978-3-031-10545-6_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-10544-9
Online ISBN: 978-3-031-10545-6
eBook Packages: Computer ScienceComputer Science (R0)