Abstract
The coronavirus outbreak became a major concern for society worldwide. Technological innovation and ingenuity are essential to fight COVID-19 pandemic and bring us one step closer to overcome it. Researchers over the world are working actively to find available alternatives in different fields, such as the Healthcare System, pharmaceutic, health prevention, among others. With the rise of artificial intelligence (AI) in the last 10 years, IA-based applications have become the prevalent solution in different areas because of its higher capability, being now adopted to help combat against COVID-19. This work provides a fast detection system of COVID-19 characteristics in X-Ray images based on deep learning (DL) techniques. This system is available as a free web deployed service for fast patient classification, alleviating the high demand for standards method for COVID-19 diagnosis. It is constituted of two deep learning models, one to differentiate between X-Ray and non-X-Ray images based on Mobile-Net architecture, and another one to identify chest X-Ray images with characteristics of COVID-19 based on the DenseNet architecture. For real-time inference, it is provided a pair of dedicated GPUs, which reduce the computational time. The whole system can filter out non-chest X-Ray images, and detect whether the X-Ray presents characteristics of COVID-19, highlighting the most sensitive regions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
World Health Organization Homepage. WHO Timeline - COVID-19 (2020). www.who.int/news-room/detail/27-04-2020-who-timeline--covid-19. Accessed 5th June 2020
World Health Organization Homepage. Coronavirus disease (COVID-19) pandemic (2020). https://www.who.int/emergencies/diseases/novel-coronavirus-2019. Accessed 22nd June 2020
Vaishya, R., Javaid, M., Khan, I.H., Haleem, A.: Artificial intelligence (AI) applications for COVID-19 pandemic. Diabetes Metab. Syndr. Clin. Res. Rev. 14(4), 337–339 (2020)
Landing AI. Tool to help customers monitor social distancing in the workplace (2020). https://landing.ai/. Accessed 26th May 2020
Institute for New Economic Thinking Homepage - University of Cambridge Faculty of Economics. (INET) (2020). http://covid.econ.cam.ac.uk/linton-uk-covid-cases-predicted-peak. Accessed 27th May 2020
Gozes, O., et al.: Rapid AI development cycle for the coronavirus (COVID-19) pandemic: initial results for automated detection & patient monitoring using deep learning CT image analysis (2020)
Cohen, J.P., Morrison, P., Dao, L.: COVID-19 Image Data Collection (2020)
LeewayHertz. Face mask detection system (2020). https://www.leewayhertz.com/face-mask-detection-system/. Accessed 26th May 2020
Li, Y.-C., Bai, W.-Z., Hashikawa, T.: The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J. Med. Virol. 92(6), 552–555 (2020)
Kalkreuth, R., Kaufmann, P.: COVID-19: a survey on public medical imaging data resources (2020)
Apostolopoulos, I.D., Mpesiana, T.A.: Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks. Phys. Eng. Sci. Med. 43(2), 635–640 (2020). https://doi.org/10.1007/s13246-020-00865-4
Hemdan, E.E.-D., Shouman, M.A., Karar, M.E.: COVIDX-Net: a framework of deep learning classifiers to diagnose COVID-19 in X-ray images (2020)
Karim, Md.R., Döhmen, T., Rebholz-Schuhmann, D., Decker, S., Cochez, M., Beyan, O.: DeepCOVIDExplainer: explainable COVID-19 predictions based on chest X-ray images (2020)
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 618–626 (2017)
Abbas, A., Abdelsamea, M., Gaber, M.: Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network. medRxiv (2020)
Afshar, P., Heidarian, S., Naderkhani, F., Oikonomou, A., Plataniotis, K.N., Mohammadi, A.: COVID-CAPS: a capsule network-based framework for identification of COVID-19 cases from X-ray images. Pattern Recogn. Lett. 138, 638–643 (2020)
Wang, L., Lin, Z.Q., Wong, A.: COVID-NET: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. Sci. Rep. 10(1), 1–12 (2020)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269 (2017)
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Gündel, S., Grbic, S., Georgescu, B., Liu, S., Maier, A., Comaniciu, D.: Learning to recognize abnormalities in chest X-rays with location-aware dense networks. In: Vera-Rodriguez, R., Fierrez, J., Morales, A. (eds.) CIARP 2018. LNCS, vol. 11401, pp. 757–765. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13469-3_88
Baltruschat, I.M., Nickisch, H., Grass, M., Knopp, T., Saalbach, A.: Comparison of deep learning approaches for multi-label chest X-ray classification. Sci. Rep. 9(1), 1–10 (2019)
Kermany, D.S., et al.: Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172(5), 1122–1131 (2018)
Kermany, D., Zhang, K., Goldbaum, M.: Labeled Optical Coherence Tomography (OCT) and Chest X-Ray Images for Classification (2018). Mendeley Data, v2, https://doi.org/10.17632/rscbjbr9sj, https://nihcc.app.box.com/v/ChestXray-NIHCC
Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: ChestX-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 2097–2106 (2017)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. ICLR (2021)
Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. CoRR, abs/1603.02754 (2016)
Smilkov, D., Thorat, N., Nicholson, C., Reif, E., Viégas, F.B., Wattenberg, M.: Embedding projector: interactive visualization and interpretation of embeddings. arXiv preprint arXiv:1611.05469 (2016)
Acknowledgement
This work could not have been done without the collaboration of the entire team of the Applied Computational Intelligence Laboratory (ICA) and Cenpes/Petrobras, partners for 21 years in the research and development of artificial intelligence projects for oil and gas sector.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Castro, J.D.B. et al. (2022). A Free Web Service for Fast COVID-19 Classification of Chest X-Ray Images with Artificial Intelligence. In: Gervasi, O., Murgante, B., Hendrix, E.M.T., Taniar, D., Apduhan, B.O. (eds) Computational Science and Its Applications – ICCSA 2022. ICCSA 2022. Lecture Notes in Computer Science, vol 13375. Springer, Cham. https://doi.org/10.1007/978-3-031-10522-7_29
Download citation
DOI: https://doi.org/10.1007/978-3-031-10522-7_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-10521-0
Online ISBN: 978-3-031-10522-7
eBook Packages: Computer ScienceComputer Science (R0)