Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Improved Architecture of Group Method of Data Handling for Stability Evaluation of Cross-sectional Bank on Alluvial Threshold Channels

  • Conference paper
  • First Online:
Intelligent Computing (SAI 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 506))

Included in the following conference series:

  • 910 Accesses

Abstract

The depth and surface of the water in the center of stable channels are two variables the majority of river engineers have been studying. As, the natural profile shape formed on stable banks is of great importance in designing threshold channels with gravel beds, in this study, extensive experiments are done to examine a channel’s geometric shape dimensions in the stable state. A novel method called the Improved Architecture of the Group Method of Data Handling (IAGMDH) is designed to overcome the main limitation of the classical GMDH model, including considering only 2nd order polynomial, considering only two inputs for each neuron as well as don’t use of neurons of the non-adjacent layers. The developed IAGMDH is applied to estimate bank profile specifications of stable channels. Accordingly, the flow discharge (Q) and transverse distance of points (x) located on stable banks from the center line are considered as input parameters and vertical boundary level (y) of points are considered as the output parameter. The performance of IAGMDH is compared and evaluated with seven previous models proposed by other researchers, a well-known scheme of the GMDH that is optimized with the genetic algorithm (GMDH-GA) and a Non-Linear Regression (NLR) model. Comparing the nine models’ results with experimental data shows that the IAGMDH model outperformed (MARE = 0.5107, RMSE = 0.052, and R = 0.9848) others in testing mode and is thus more accurate than the other models. Vigilar and Diplas Model (VDM) with RMSE of 0.2934 performs better among previous relationships. The GMDH model presented in this study is similar to VDM, suggesting a polynomial curve shape for the proposed threshold’s cross-section. Among other shapes proposed, the polynomial curve is the most appropriate compared with experimental values. The IAGMDH model also offers a robust and straightforward relationship that can predict a variety of channels’ given cross-section dimensions; hence, the proposed approach can be employed in the design, construction, and operation of artificial channels and rivers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yu, G., Knight, D.W.: Geometry of self-formed straight threshold channels in uniform material. Proc. Inst. Civil Eng. Water Maritime Energy 130(1), 31–41 (1998)

    Article  Google Scholar 

  2. Kazemian-Kale-Kale, A., Bonakdari, H., Gholami, A., Khozani, Z.S., Akhtari, A.A., Gharabaghi, B.: Uncertainty analysis of shear stress estimation in circular channels by Tsallis entropy. Phys. A 510, 558–576 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Millar, R.G.: Theoretical regime equations for mobile gravel-bed rivers with stable banks. Geomorphology 64(3–4), 207–220 (2005)

    Article  Google Scholar 

  4. Lee, J.S., Julien, P.Y.: Downstream hydraulic geometry of alluvial channels. J. Hydraul. Eng. 132(12), 1347–1352 (2006)

    Article  Google Scholar 

  5. Afzalimehr, H., Abdolhosseini, M., Singh, V.P.: Hydraulic geometry relations for stable channel design. J. Hydrol. Eng. 15(10), 859–864 (2010)

    Article  Google Scholar 

  6. Kaless, G., Mao, L., Lenzi, M.A.: Regime theories in gravel-bed rivers: models, controlling variables, and applications in disturbed Italian rivers. Hydrol. Process. 28(4), 2348–2360 (2014)

    Article  Google Scholar 

  7. Singh, U.: Controls on and morphodynamic effects of width variations in bed-load dominated alluvial channels: experimental and numerical study (Doctoral dissertation, University of Trento) (2015)

    Google Scholar 

  8. Liu, X., Huang, H.Q., Nanson, G.C.: The morphometric variation of islands in the middle and lower Yangtze River: a variational analytical explanation. Geomorphology 261, 273–281 (2016)

    Article  Google Scholar 

  9. Eaton, B., Millar, R.: Predicting gravel bed river response to environmental change: the strengths and limitations of a regime-based approach. Earth Surf. Proc. Land. 42(6), 994–1008 (2017)

    Article  Google Scholar 

  10. Zhang, M., Townend, I., Zhou, Y., Cai, H.: Seasonal variation of river and tide energy in the Yangtze estuary. China. Earth Surface Process. Landforms 41(1), 98–116 (2016)

    Article  Google Scholar 

  11. Gholami, A., Bonakdari, H., Ebtehaj, I., Shaghaghi, S., Khoshbin, F.: Developing an expert group method of data handling system for predicting the geometry of a stable channel with a gravel bed. Earth Surf. Proc. Land. 42(10), 1460–1471 (2017)

    Article  Google Scholar 

  12. Shaghaghi, S., Bonakdari, H., Gholami, A., Ebtehaj, I., Zeinolabedini, M.: Comparative analysis of GMDH neural network based on genetic algorithm and particle swarm optimization in stable channel design. Appl. Math. Comput. 313, 271–286 (2017)

    Google Scholar 

  13. Shaghaghi, S., et al.: Stable alluvial channel design using evolutionary neural networks. J. Hydrol. 566, 770–782 (2018)

    Article  Google Scholar 

  14. Shaghaghi, S., Bonakdari, H., Gholami, A., Kisi, O., Binns, A., Gharabaghi, B.: Predicting the geometry of regime rivers using M5 model tree, multivariate adaptive regression splines and least square support vector regression methods. Int. J. River Basin Manage. 17(3), 333–352 (2019)

    Article  Google Scholar 

  15. Nanson, G.C., Huang, H.Q.: A philosophy of rivers: equilibrium states, channel evolution, teleomatic change and least action principle. Geomorphology 302, 3–19 (2018)

    Article  Google Scholar 

  16. Vigilar Jr, G.G., Diplas, P.: Stable channels with mobile bed: formulation and numerical solution. J. Hydraul. Eng. 123(3), 189–199 (1997)

    Google Scholar 

  17. Henderson, F.M.: Stability of alluvial channels. J. Hydraul. Div. 87(6), 109–138 (1961)

    Article  Google Scholar 

  18. Pizzuto, J.E.: Numerical simulation of gravel river widening. Water Resour. Res. 26(9), 1971–1980 (1990)

    Article  Google Scholar 

  19. Glover, R.E., Florey, Q.L.: Stable channel profiles, Lab. Rep. 325Hydraul, U.S. Bureau of Reclamation, Washington, DC (1951)

    Google Scholar 

  20. Simons, D.B., Senturk, F.: Sediment transport technology, Fort Collins. Water Resources Publications. Colorado , 4 (TC175. 2, S5) (1976)

    Google Scholar 

  21. Parker, G.: Self-formed straight rivers with equilibrium banks and mobile bed. Part 2. The gravel river. J. Fluid Mech. 89(1), 127–146 (1978)

    Google Scholar 

  22. Cao, S., Knight, D.W.: Entropy-based design approach of threshold alluvial channels. J. Hydraul. Res. 35(4), 505–524 (1997)

    Article  Google Scholar 

  23. Ikeda, S.: Self-formed straight channels in sandy beds. J. Hydraul. Div. 107(4), 389–406 (1981)

    Article  Google Scholar 

  24. Diplas, P.: Characteristics of self-formed straight channels. J. Hydraul. Eng. 116(5), 707–728 (1990)

    Article  Google Scholar 

  25. Diplas, P., Vigilar, G.: Hydraulic geometry of threshold channels. J. Hydraul. Eng. 118(4), 597–614 (1992)

    Article  Google Scholar 

  26. Vigilar, G.G., Jr., Diplas, P.: Stable channels with mobile bed: model verification and graphical solution. J. Hydraul. Eng. 124(11), 1097–1108 (1998)

    Article  Google Scholar 

  27. Dey, S.: Bank profile of threshold channels: a simplified approach. J. Irrig. Drain. Eng. 127(3), 184–187 (2001)

    Article  Google Scholar 

  28. Khodashenas, S.R.: Threshold gravel channels bank profile: a comparison among 13 models. Int. J. River Basin Manage. 14(3), 337–344 (2016)

    Article  Google Scholar 

  29. Stebbings, J.: The shape of self-formed model alluvial channels. Proc. Inst. Civ. Eng. 25(4), 485–510 (1963)

    Google Scholar 

  30. Ikeda, S., Parker, G., Kimura, Y.: Stable width and depth of straight gravel rivers with heterogeneous bed materials. Water Resour. Res. 24(5), 713–722 (1988)

    Article  Google Scholar 

  31. Babaeyan-Koopaei, K.: A study of straight stable channels and their interactions with bridge structures (Doctoral dissertation, Newcastle University) (1996)

    Google Scholar 

  32. Gholami, A., Bonakdari, H., Mohammadian, M., Zaji, A.H., Gharabaghi, B.: Assessment of geomorphological bank evolution of the alluvial threshold rivers based on entropy concept parameters. Hydrol. Sci. J. 64(7), 856–872 (2019)

    Article  Google Scholar 

  33. Gholami, A., Bonakdari, H., Mohammadian, A.: A method based on the Tsallis entropy for characterizing threshold channel bank profiles. Physica A: Statistical Mechanics and its Applications, p. 121089 (2019)

    Google Scholar 

  34. Gholami, A., Bonakdari, H., Zaji, A.H., Akhtari, A.A.: Simulation of open channel bend characteristics using computational fluid dynamics and artificial neural networks. Eng. Appl. Comput. Fluid Mech. 9(1), 355–369 (2015)

    Google Scholar 

  35. Gholami, A., Bonakdari, H., Zaji, A.H., Akhtari, A.A., Khodashenas, S.R.: Predicting the velocity field in a 90 open channel bend using a gene expression programming model. Flow Meas. Instrum. 46, 189–192 (2015)

    Article  Google Scholar 

  36. Gholami, A., Bonakdari, H., Ebtehaj, I., Akhtari, A.A.: Design of an adaptive neuro-fuzzy computing technique for predicting flow variables in a 90 sharp bend. J. Hydroinf. 19(4), 572–585 (2017)

    Article  Google Scholar 

  37. Yaseen, Z.M., et al.: Novel hybrid data-intelligence model for forecasting monthly rainfall with uncertainty analysis. Water 11(3), 502 (2019)

    Article  Google Scholar 

  38. Gholami, A., Bonakdari, H., Zaji, A.H., Ajeel Fenjan, S., Akhtari, A.A.: Design of modified structure multi-layer perceptron networks based on decision trees for the prediction of flow parameters in 90° open-channel bends. Eng. Appl. Comput. Fluid Mech. 10(1), 194–209 (2016)

    Google Scholar 

  39. Gholami, A., Bonakdari, H., Zaji, A.H., Michelson, D.G., Akhtari, A.A.: Improving the performance of multi-layer perceptron and radial basis function models with a decision tree model to predict flow variables in a sharp 90° bend. Appl. Soft Comput. 48, 563–583 (2016)

    Article  Google Scholar 

  40. Gholami, A., Bonakdari, H., Zaji, A.H., Akhtari, A.A.: A comparison of artificial intelligence-based classification techniques in predicting flow variables in sharp curved channels. Eng. Comput. 36(1), 295–324 (2019). https://doi.org/10.1007/s00366-018-00697-7

    Article  Google Scholar 

  41. Fenjan, S.A., Bonakdari, H., Gholami, A., Akhtari, A.A.: Flow variables prediction using experimental, computational fluid dynamic and artificial neural network models in a sharp bend. Int. J. Eng. 29(1), 14–22 (2016)

    Google Scholar 

  42. Karimi, S., Bonakdari, H., Karami, H., Gholami, A., Zaji, A.H.: Effects of width ratios and deviation angles on the mean velocity in inlet channels using numerical modeling and artificial neural network modeling. Int. J. Civil Eng. 15(2), 149–161 (2017)

    Article  Google Scholar 

  43. Azimi, H., Bonakdari, H., Ebtehaj, I.: Gene expression programming-based approach for predicting the roller length of a hydraulic jump on a rough bed. ISH J. Hydraul. Eng. 27(1), 77–87 (2019)

    Google Scholar 

  44. Ebtehaj, I., Bonakdari, H., Zaji, A.H.: A new hybrid decision tree method based on two artificial neural networks for predicting sediment transport in clean pipes. Alex. Eng. J. 57(3), 1783–1795 (2018)

    Article  Google Scholar 

  45. Ebtehaj, I., Bonakdari, H., Zeynoddin, M., Gharabaghi, B., Azari, A.: Evaluation of preprocessing techniques for improving the accuracy of stochastic rainfall forecast models. Int. J. Environ. Sci. Technol. 17(1), 505–524 (2019). https://doi.org/10.1007/s13762-019-02361-z

    Article  Google Scholar 

  46. Ebtehaj, I., Bonakdari, H., Gharabaghi, B.: A reliable linear method for modeling lake level fluctuations. J. Hydrol. 570, 236–250 (2019)

    Article  Google Scholar 

  47. Lotfi, K., et al.: Predicting wastewater treatment plant quality parameters using a novel hybrid linear-nonlinear methodology. J. Environ. Manage. 240, 463–474 (2019)

    Article  Google Scholar 

  48. Zaji, A.H., Bonakdari, H., Gharabaghi, B.: Developing an AI-based method for river discharge forecasting using satellite signals. Theoret. Appl. Climatol. 138(1–2), 347–362 (2019). https://doi.org/10.1007/s00704-019-02833-9

    Article  Google Scholar 

  49. Bonakdari, H., Gholami, A.: Evaluation of artificial neural network model and statistical analysis relationships to predict the stable channel width, 11–14 July, p. 417. River Flow 2016: Iowa City, USA (2016)

    Google Scholar 

  50. Azimi, H., Bonakdari, H., Ebtehaj, I., Gharabaghi, B., Khoshbin, F.: Evolutionary design of generalized group method of data handling-type neural network for estimating the hydraulic jump roller length. Acta Mech. 229(3), 1197–1214 (2017). https://doi.org/10.1007/s00707-017-2043-9

    Article  Google Scholar 

  51. Ebtehaj, I., Bonakdari, H., Gharabaghi, B.: Development of more accurate discharge coefficient prediction equations for rectangular side weirs using adaptive neuro-fuzzy inference system and generalized group method of data handling. Measurement 116, 473–482 (2018)

    Article  Google Scholar 

  52. Gholami, A., Bonakdari, H., Zeynoddin, M., Ebtehaj, I., Gharabaghi, B., Khodashenas, S.R.: Reliable method of determining stable threshold channel shape using experimental and gene expression programming techniques. Neural Comput. Appl. 31(10), 5799–5817 (2018). https://doi.org/10.1007/s00521-018-3411-7

    Article  Google Scholar 

  53. Gholami, A., et al.: A methodological approach of predicting threshold channel bank profile by multi-objective evolutionary optimization of ANFIS. Eng. Geol. 239, 298–309 (2018)

    Article  Google Scholar 

  54. Gholami, A., Bonakdari, H., Ebtehaj, I., Mohammadian, M., Gharabaghi, B., Khodashenas, S.R.: Uncertainty analysis of intelligent model of hybrid genetic algorithm and particle swarm optimization with ANFIS to predict threshold bank profile shape based on digital laser approach sensing. Measurement 121, 294–303 (2018)

    Article  Google Scholar 

  55. Gholami, A., Bonakdari, H., Ebtehaj, I., Talesh, S.H.A., Khodashenas, S.R., Jamali, A.: Analyzing bank profile shape of alluvial stable channels using robust optimization and evolutionary ANFIS methods. Appl. Water Sci. 9(3), 40 (2019)

    Google Scholar 

  56. Gholami, A., Bonakdari, H., Samui, P., Mohammadian, M., Gharabaghi, B.: Predicting stable alluvial channel profiles using emotional artificial neural networks. Appl. Soft Comput. 78, 420–437 (2019)

    Article  Google Scholar 

  57. Ebtehaj, I., Bonakdari, H., Khoshbin, F.: Evolutionary design of a generalized polynomial neural network for modelling sediment transport in clean pipes. Eng. Optim. 48(10), 1793–1807 (2016)

    Article  Google Scholar 

  58. Ebtehaj, I., Bonakdari, H., Khoshbin, F., Bong, C., Joo, H., Ab Ghani, A.: Development of group method of data handling based on genetic algorithm to predict incipient motion in rigid rectangular storm water channel. Scientia Iranica 24(3), 1000–1009 (2017)

    Article  Google Scholar 

  59. Walton, R., Binns, A., Bonakdari, H., Ebtehaj, I., Gharabaghi, B.: Estimating 2-year flood flows using the generalized structure of the Group Method of Data Handling. J. Hydrol. 575, 671–689 (2019)

    Article  Google Scholar 

  60. ASCE Task Committee on Hydraulics, Bank Mechanics, and Modeling of River Width Adjustment on River width adjustment. I: Processes and mechanisms. J. Hydraul. Eng. 124(9), 881–902 (1998)

    Google Scholar 

  61. Ivakhnenko, A.G.: Polynomial theory of complex systems. IEEE Trans. Syst. Man Cybern. 4, 364–378 (1971)

    Article  MathSciNet  Google Scholar 

  62. Farlow, S.J.: Self-Organizing Method in Modelling: GMDH Type Algorithm, p. 54. Marcel Dekker Inc., CRC Press (1984)

    Google Scholar 

  63. Iba, H., deGaris, H., Sato, T.: A numerical approach to genetic programming for system identification. Evol. Comput. 3(4), 417–452 (1995)

    Article  Google Scholar 

  64. Safari, M.J.S., Ebtehaj, I., Bonakdari, H., Es-haghi, M.S.: Sediment transport modeling in rigid boundary open channels using generalize structure of group method of data handling. J. Hydrol. 577, 123951 (2019)

    Article  Google Scholar 

  65. Soltani, K., Amiri, A., Zeynoddin, M., Ebtehaj, I., Gharabaghi, B., Bonakdari, H.: Forecasting monthly fluctuations of lake surface areas using remote sensing techniques and novel machine learning methods. Theoret. Appl. Climatol. 143(1–2), 713–735 (2020). https://doi.org/10.1007/s00704-020-03419-6

    Article  Google Scholar 

  66. Harman, C., Stewardson, M., DeRose, R.: Variability and uncertainty in reach bankfull hydraulic geometry. J. Hydrol. 351(1–2), 13–25 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Bonakdari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bonakdari, H., Gholami, A., Ebtehaj, I., Gharebaghi, B. (2022). An Improved Architecture of Group Method of Data Handling for Stability Evaluation of Cross-sectional Bank on Alluvial Threshold Channels. In: Arai, K. (eds) Intelligent Computing. SAI 2022. Lecture Notes in Networks and Systems, vol 506. Springer, Cham. https://doi.org/10.1007/978-3-031-10461-9_53

Download citation

Publish with us

Policies and ethics