Nothing Special   »   [go: up one dir, main page]

Skip to main content

Brain-DeepNet: A Deep Learning Based Classifier for Brain Tumor Detection and Classification

  • Conference paper
  • First Online:
Intelligent Computing & Optimization (ICO 2022)

Abstract

Brain tumor is one of the most hazardous disease that leads a man to gradual death. To ensure proper and effective treatment, this is very important to detect the brain tumor and predict this as cancerous or non-cancerous. Radiologists have shown interest to detect brain tumor and its category analyzing the MRI (Magnetic Resonance Image) of brain. This detection and classification task seems to be challenging because of different size, location and behavior of brain tumors. Deep learning based classifiers extract features from MRI and helps to diagnose brain tumor with the help of computer aided diagnosis system. In this paper, we have experimented this classification task on a publicly available dataset using transfer learning approach in InceptionV3 and DenseNet201 model. Data augmentation technique is performed to enrich the dataset for achieving a good classification result an to avoid over fitting.“Brain-DeepNet” a deep convolutional neural network has been proposed where six convolution layers are densely connected and extract features from dense layers. These dense layers extract features and all features are passed to a fully connected layer. Dense network extract features more efficiently from brain MRI. This work is experimented on MRI as MRI provides more details of cell structure and functions. Our proposed model has shown approximately 96.3% classification accuracy to differentiate among the three types of brain tumors most commonly encountered Glioma, meningioma, and pituitary. This model outperforms the classification performance in comparison with the pretrained models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amin, J., Sharif, M., Raza, M., Yasmin, M.: Detection of brain tumor based on features fusion and machine learning. J. Ambient Intell. Hum. Comput. 1–17 (2018)

    Google Scholar 

  2. Park, J.G., Lee, C.: Skull stripping based on region growing for magnetic resonance brain images. Neuroimage 47(4), 1394–1407 (2009)

    Article  Google Scholar 

  3. Khan, M.A., et al.: Brain tumor detection and classification: a framework of marker-based watershed algorithm and multilevel priority features selection. Microsc. Res. Tech. 82(6), 909–922 (2019)

    Article  Google Scholar 

  4. Raza, M., Sharif, M., Yasmin, M., Masood, S., Mohsin, S.: Brain image representation and rendering: a survey. Res. J. Appl. Sci. Eng. Technol. 4(18), 3274–3282 (2012)

    Google Scholar 

  5. Nalbalwar, R., Majhi, U., Patil, R., Gonge, S.: Detection of brain tumor by using ANN. Image 2(3), 7 (2014)

    Google Scholar 

  6. Özyurt, F., Sert, E., Avci, E., Dogantekin, E.: Brain tumor detection based on Convolutional Neural Network with neutrosophic expert maximum fuzzy sure entropy. Measurement 147, 106830 (2019)

    Google Scholar 

  7. Milletari, F., et al.: Hough-CNN: deep learning for segmentation of deep brain regions in MRI and ultrasound. Comput. Vis. Image Underst. 164, 92–102 (2017)

    Article  Google Scholar 

  8. Banerjee, S., Mitra, S., Masulli, F., Rovetta, S.: Deep radiomics for brain tumor detection and classification from multi-sequence MRI. arXiv preprint arXiv:1903.09240 (2019)

  9. Bathe, K., Rana, V., Singh, S., Singh, V.: Brain Tumor Detection Using Deep Learning Techniques (2021). SSRN 3867216

    Google Scholar 

  10. Kumar, S., Negi, A., Singh, J.N., Verma, H.: A deep learning for brain tumor magnetic resonance imaging images semantic segmentation using FCN. In: 2018 4th International Conference on Computing Communication and Automation (ICCCA) (2018). ISBN 978-1-5386-6947-1

    Google Scholar 

  11. Hemanth, G., Janardhan, M., Sujihelen, L.: Design and implementing brain tumor detection using machine learning approach. In: 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), pp. 1289–1294. IEEE (2019)

    Google Scholar 

  12. Hossain, T., Shishir, F.S., Ashraf, M., Al Nasim, M.A., Shah, F.M.: Brain tumor detection using convolutional neural network. In: 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), pp. 1–6. IEEE (2019)

    Google Scholar 

  13. Salçin, K.: Detection and classification of brain tumours from MRI images using faster R-CNN. Tehnički glasnik 13(4), 337–342 (2019)

    Article  Google Scholar 

  14. Sarkar, S., Kumar, A., Chakraborty, S., Aich, S., Sim, J.S., Kim, H.C.: A CNN based approach for the detection of brain tumours using MRI scans. Test Eng. Manag. 83, 16580–16586 (2020)

    Google Scholar 

  15. Ranjbarzadeh, R., Bagherian Kasgari, A., Jafarzadeh Ghoushchi, S., Anari, S., Naseri, M., Bendechache, M.: Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images. Sci. Rep. 11(1), 1–17 (2021)

    Article  Google Scholar 

  16. Gumaei, A., Hassan, M.M., Hassan, M.R., Alelaiwi, A., Fortino, G.: A hybrid feature extraction method with regularized extreme learning machine for brain tumor classification. IEEE Access 7, 36266–36273 (2019)

    Article  Google Scholar 

  17. Kaplan, K., Kaya, Y., Kuncan, M., Ertunç, H.M.: Brain tumor classification using modified local binary patterns (LBP) feature extraction methods. Med. Hypotheses 139, 109696 (2020)

    Google Scholar 

  18. Ismael, M.R., Abdel-Qader, I.: Brain tumor classification via statistical features and back-propagation neural network. In: 2018 IEEE International Conference on Electro/Information Technology (EIT), pp. 0252–0257. IEEE (2018)

    Google Scholar 

  19. Thejaswini, P., Bhat, M.B., Prakash, M.K.: Detection and classification of tumour in brain MRI. Int. J. Eng. Manufact. (IJEM) 9(1), 11–20 (2019)

    Article  Google Scholar 

  20. Nadeem, M.W., et al.: Brain tumor analysis empowered with deep learning: a review, taxonomy, and future challenges. Brain Sci. 10(2), 118 (2020)

    Article  Google Scholar 

  21. Shunmugathammal, M., Christopher Columbus, C., Anand, S.: A novel B* tree crossover-based simulated annealing algorithm for combinatorial optimization in VLSI fixed-outline floorplans. Circuits Syst. Signal Process. 39(2), 900–918 (2020)

    Article  Google Scholar 

  22. Brain Tumor Classification (MRI). https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri

  23. Inception V3 CNN Architecture Explained. https://medium.com/@AnasBrital98/inception-v3-cnn-architecture-explained-691cfb7bba08

  24. Nahar, L., Hossain, M.S., Das, P., Alam, T., Andersson, K.: A deep learning-based ophthalmologic approach for retinal fundus image analysis to detect glaucoma. In: Kaiser, M.S., Ray, K., Bandyopadhyay, A., Jacob, K., Long, K.S. (eds.) Proceedings of the Third International Conference on Trends in Computational and Cognitive Engineering. LNNS, vol. 348, pp. 519–532. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-7597-3_43

    Chapter  Google Scholar 

  25. Basnin, N., Nahar, N., Anika, F.A., Hossain, M.S., Andersson, K.: Deep learning approach to classify Parkinson’s disease from MRI samples. In: Mahmud, M., Kaiser, M.S., Vassanelli, S., Dai, Q., Zhong, N. (eds.) BI 2021. LNCS (LNAI), vol. 12960, pp. 536–547. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86993-9_48

    Chapter  Google Scholar 

  26. Shafkat Raihan, S.M., Islam, R.U., Hossain, M.S., Andersson, K.: A BRBES to support diagnosis of COVID-19 using clinical and CT scan data. In: Arefin, M.S., Kaiser, M.S., Bandyopadhyay, A., Ahad, M.A.R., Ray, K. (eds.) Proceedings of the International Conference on Big Data, IoT, and Machine Learning. LNDECT, vol. 95, pp. 483–496. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-6636-0_37

    Chapter  Google Scholar 

  27. Ahmed, T.U., Hossain, S., Hossain, M.S., Islam, R.U., Andersson, K.: A deep learning approach with data augmentation to recognize facial expressions in real time. In: Kaiser, M.S., Ray, K., Bandyopadhyay, A., Jacob, K., Long, K.S. (eds.) Proceedings of the Third International Conference on Trends in Computational and Cognitive Engineering. LNNS, vol. 348, pp. 487–500. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-7597-3_40

    Chapter  Google Scholar 

  28. Vasant, P., Zelinka, I., Weber, G.-W. (eds.): ICO 2021. LNNS, vol. 371. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-93247-3

    Book  Google Scholar 

  29. Rezoana, N., Hossain, M.S., Andersson, K.: Face mask detection in the era of COVID-19: a CNN-based approach. In: Kaiser, M.S., Ray, K., Bandyopadhyay, A., Jacob, K., Long, K.S. (eds.) Proceedings of the Third International Conference on Trends in Computational and Cognitive Engineering. LNNS, vol. 348, pp. 3–15. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-7597-3_1

    Chapter  Google Scholar 

  30. Chowdhury, R.R., Hossain, M.S., Hossain, S., Andersson, K.: Analyzing sentiment of movie reviews in Bangla by applying machine learning techniques. In: 2019 International Conference on Bangla Speech and Language Processing (ICBSLP), pp. 1–6. IEEE (2019)

    Google Scholar 

  31. Islam, R.U., Hossain, M.S., Andersson, K.: A deep learning inspired belief rule-based expert system. IEEE Access 8, 190637–190651 (2020)

    Article  Google Scholar 

  32. Ahmed, T.U., Jamil, M.N., Hossain, M.S., Andersson, K., Hossain, M.S.: An integrated real-time deep learning and belief rule base intelligent system to assess facial expression under uncertainty. In: 2020 Joint 9th International Conference on Informatics, Electronics & Vision (ICIEV) and 2020 4th International Conference on Imaging, Vision & Pattern Recognition (icIVPR), pp. 1–6. IEEE (2020)

    Google Scholar 

  33. Alam, M.E., Kaiser, M.S., Hossain, M.S., Andersson, K.: An IoT-belief rule base smart system to assess autism. In: 2018 4th International Conference on Electrical Engineering and Information & Communication Technology (iCEEiCT), pp. 672–676. IEEE (2018)

    Google Scholar 

  34. Akter, M., Hossain, M.S., Ahmed, T.U., Andersson, K.: Mosquito classification using convolutional neural network with data augmentation. In: Vasant, P., Zelinka, I., Weber, G.-W. (eds.) ICO 2020. AISC, vol. 1324, pp. 865–879. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68154-8_74

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzana Tasnim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Habiba, S.U., Islam, M.K., Nahar, L., Tasnim, F., Hossain, M.S., Andersson, K. (2023). Brain-DeepNet: A Deep Learning Based Classifier for Brain Tumor Detection and Classification. In: Vasant, P., Weber, GW., Marmolejo-Saucedo, J.A., Munapo, E., Thomas, J.J. (eds) Intelligent Computing & Optimization. ICO 2022. Lecture Notes in Networks and Systems, vol 569. Springer, Cham. https://doi.org/10.1007/978-3-031-19958-5_52

Download citation

Publish with us

Policies and ethics