Abstract
We show that the plane-probing algorithms introduced in Lachaud et al. (J. Math. Imaging Vis., 59, 1, 23–39, 2017), which compute the normal vector of a digital plane from a starting point and a set-membership predicate, are closely related to a three-dimensional generalization of the Euclidean algorithm. In addition, we show how to associate with the steps of these algorithms generalized substitutions, i.e., rules that replace square faces by unions of square faces, to build finite sets of elements that periodically generate digital planes. This work is a first step towards the incremental computation of a hierarchy of pieces of digital plane that locally fit a digital surface.
This work has been funded by PARADIS ANR-18-CE23-0007-01 research grant.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arnoux, P., Furukado, M., Harriss, E., Ito, S.: Algebraic numbers, free group automorphisms and substitutions on the plane. Trans. Amer. Math. Soc. 363, 4651–4699 (2011)
Arnoux, P., Ito, S.: Pisot substitutions and Rauzy fractals. Bull. Belg. Math. Soc. Simon Stevin 8(2), 181–208 (2001)
Berthé, V., Domenjoud, É., Jamet, D., Provençal, X.: Fully Subtractive algorithm, tribonacci numeration and connectedness of discrete planes. Res. Inst. Math. Sci. Lecture Note Kokyuroku Bessatu B 46, 159–174 (2014)
Berthé, V., Fernique, T.: Brun expansions of stepped surfaces. Discret. Math. 311(7), 521–543 (2011)
Berthé, V., Jamet, D., Jolivet, T., Provençal, X.: Critical connectedness of thin arithmetical discrete planes. In: Proceedings of DGCI, pp. 107–118 (2013)
Berthé, V., Lacasse, A., Paquin, G., Provençal, X.: A study of Jacobi-Perron boundary words for the generation of discrete planes. Theor. Comput. Sci. 502, 118–142 (2013)
Brimkov, V., Coeurjolly, D., Klette, R.: Digital planarity - a review. Discret. Appl. Math. 155(4), 468–495 (2007)
Domenjoud, E., Laboureix, B., Vuillon, L.: Facet connectedness of arithmetic discrete hyperplanes with non-zero shift. In: Proceedings of DGCI (2019)
Domenjoud, E., Provençal, X., Vuillon, L.: Facet connectedness of discrete hyperplanes with zero intercept: the general case. In: Proceedings of DGCI, pp. 1–12 (2014)
Domenjoud, E., Vuillon, L.: Geometric palindromic closure. Unif. Distrib. Theory 7(2), 109–140 (2012)
Fernique, T.: Multidimensional Sturmian sequences and generalized substitutions. Int. J. Found. Comput. Sci. 17, 575–600 (2006)
Fernique, T.: Generation and recognition of digital planes using multi-dimensional continued fractions. Pattern Recogn. 42(10), 2229–2238 (2009)
Jamet, D., Lafrenière, N., Provençal, X.: Generation of digital planes using generalized continued-fractions algorithms. In: Proceedings of DGCI, pp. 45–56 (2016)
Jolivet, T.: Combinatorics of Pisot substitutions. Ph.d. thesis, Université Paris Diderot, University of Turku (2013)
Klette, R., Rosenfeld, A.: Digital straightness - a review. Discret. Appl. Math. 139(1–3), 197–230 (2004)
Labbé, S., Reutenauer, C.: A d-dimensional extension of christoffel words. Discret. Comput. Geom. 54(1), 152–181 (2015)
Lachaud, J.O., Meyron, J., Roussillon, T.: An optimized framework for plane-probing algorithms. J. Math. Imaging Vis. 62, 718–736 (2020)
Lachaud, J.O., Provençal, X., Roussillon, T.: Two plane-probing algorithms for the computation of the normal vector to a digital plane. J. Math. Imaging Vis. 59, 23–39 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Proofs
Proofs
Proof
(of Theorem 2).
The second to last line comes from
since \((\textbf{M}_{\sigma _{n-1}} \cdots \textbf{M}_{\sigma _0})^{-1}\) does not depend on the union in the definition of \(E^*_1\), Eq. (3) (see also [14, Proposition 1.2.4, item (2)]). \(\square \)
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Meyron, J., Roussillon, T. (2022). Approximation of Digital Surfaces by a Hierarchical Set of Planar Patches. In: Baudrier, É., Naegel, B., Krähenbühl, A., Tajine, M. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2022. Lecture Notes in Computer Science, vol 13493. Springer, Cham. https://doi.org/10.1007/978-3-031-19897-7_32
Download citation
DOI: https://doi.org/10.1007/978-3-031-19897-7_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19896-0
Online ISBN: 978-3-031-19897-7
eBook Packages: Computer ScienceComputer Science (R0)