Nothing Special   »   [go: up one dir, main page]

Skip to main content

Source-Free Video Domain Adaptation by Learning Temporal Consistency for Action Recognition

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

Video-based Unsupervised Domain Adaptation (VUDA) methods improve the robustness of video models, enabling them to be applied to action recognition tasks across different environments. However, these methods require constant access to source data during the adaptation process. Yet in many real-world applications, subjects and scenes in the source video domain should be irrelevant to those in the target video domain. With the increasing emphasis on data privacy, such methods that require source data access would raise serious privacy issues. Therefore, to cope with such concern, a more practical domain adaptation scenario is formulated as the Source-Free Video-based Domain Adaptation (SFVDA). Though there are a few methods for Source-Free Domain Adaptation (SFDA) on image data, these methods yield degenerating performance in SFVDA due to the multi-modality nature of videos, with the existence of additional temporal features. In this paper, we propose a novel Attentive Temporal Consistent Network (ATCoN) to address SFVDA by learning temporal consistency, guaranteed by two novel consistency objectives, namely feature consistency and source prediction consistency, performed across local temporal features. ATCoN further constructs effective overall temporal features by attending to local temporal features based on prediction confidence. Empirical results demonstrate the state-of-the-art performance of ATCoN across various cross-domain action recognition benchmarks. Code is provided at https://github.com/xuyu0010/ATCoN.

This research is jointly supported by A*STAR Singapore under its AME Programmatic Funds (Grant No. A20H6b0151) and Career Development Award (Grant No. C210112046), and by Nanyang Technological University, Singapore, under its NTU Presidential Postdoctoral Fellowship, “Adaptive Multimodal Learning for Robust Sensing and Recognition in Smart Cities” project fund.

Y. Xu and J. Yang—Equal Contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)

    Google Scholar 

  2. Chen, M.H., Kira, Z., AlRegib, G., Yoo, J., Chen, R., Zheng, J.: Temporal attentive alignment for large-scale video domain adaptation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6321–6330 (2019)

    Google Scholar 

  3. Chen, M.H., Li, B., Bao, Y., AlRegib, G., Kira, Z.: Action segmentation with joint self-supervised temporal domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9454–9463 (2020)

    Google Scholar 

  4. Choi, J., Sharma, G., Schulter, S., Huang, J.-B.: Shuffle and attend: video domain adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 678–695. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_40

    Chapter  Google Scholar 

  5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  6. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: International Conference on Machine Learning, pp. 1180–1189. PMLR (2015)

    Google Scholar 

  7. Ghifary, M., Kleijn, W.B., Zhang, M., Balduzzi, D., Li, W.: Deep reconstruction-classification networks for unsupervised domain adaptation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 597–613. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_36

    Chapter  Google Scholar 

  8. Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization. Adv. Neural Inf. Process. Syst. 17 (2004)

    Google Scholar 

  9. Hara, K., Kataoka, H., Satoh, Y.: Learning spatio-temporal features with 3d residual networks for action recognition. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 3154–3160 (2017). https://doi.org/10.1109/ICCVW.2017.373

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  11. Huang, L., Joseph, A.D., Nelson, B., Rubinstein, B.I., Tygar, J.D.: Adversarial machine learning. In: Proceedings of the 4th ACM Workshop on Security and Artificial Intelligence, pp. 43–58 (2011)

    Google Scholar 

  12. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)

    Google Scholar 

  13. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1725–1732 (2014)

    Google Scholar 

  14. Kay, W., et al.: The kinetics human action video dataset (2017)

    Google Scholar 

  15. Kim, Y., Cho, D., Han, K., Panda, P., Hong, S.: Domain adaptation without source data. IEEE Trans. Artif. Intell. 2(6), 508–518 (2021). https://doi.org/10.1109/TAI.2021.3110179

    Article  Google Scholar 

  16. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: Hmdb: a large video database for human motion recognition. In: 2011 International Conference on Computer Vision, pp. 2556–2563. IEEE (2011)

    Google Scholar 

  17. Kurmi, V.K., Subramanian, V.K., Namboodiri, V.P.: Domain impression: a source data free domain adaptation method. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 615–625 (2021)

    Google Scholar 

  18. Li, R., Jiao, Q., Cao, W., Wong, H.S., Wu, S.: Model adaptation: unsupervised domain adaptation without source data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9641–9650 (2020)

    Google Scholar 

  19. Li, S., et al.: Semantic concentration for domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9102–9111 (2021)

    Google Scholar 

  20. Liang, J., Hu, D., Feng, J.: Do we really need to access the source data? source hypothesis transfer for unsupervised domain adaptation. In: International Conference on Machine Learning, pp. 6028–6039. PMLR (2020)

    Google Scholar 

  21. Liang, J., Hu, D., Wang, Y., He, R., Feng, J.: Source data-absent unsupervised domain adaptation through hypothesis transfer and labeling transfer. IEEE Trans. Pattern Anal. Mach. Intell. 44(11), 8602–8617 (2021)

    Google Scholar 

  22. Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep adaptation networks. In: International Conference on Machine Learning, pp. 97–105. PMLR (2015)

    Google Scholar 

  23. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)

    MATH  Google Scholar 

  24. Monfort, M., et al.: Moments in time dataset: one million videos for event understanding. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 502–508 (2019)

    Article  Google Scholar 

  25. Müller, R., Kornblith, S., Hinton, G.: When does label smoothing help? arXiv preprint arXiv:1906.02629 (2019)

  26. Pan, B., Cao, Z., Adeli, E., Niebles, J.C.: Adversarial cross-domain action recognition with co-attention. In: AAAI, pp. 11815–11822 (2020)

    Google Scholar 

  27. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8026–8037 (2019)

    Google Scholar 

  28. Qiu, Z., et al.: Source-free domain adaptation via avatar prototype generation and adaptation. In: International Joint Conference on Artificial Intelligence (2021)

    Google Scholar 

  29. Saito, K., Kim, D., Sclaroff, S., Darrell, T., Saenko, K.: Semi-supervised domain adaptation via minimax entropy. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8050–8058 (2019)

    Google Scholar 

  30. Saito, K., Kim, D., Sclaroff, S., Saenko, K.: Universal domain adaptation through self supervision. Adv. Neural Inf. Process. Syst. 33, 16282–16292 (2020)

    Google Scholar 

  31. Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3723–3732 (2018)

    Google Scholar 

  32. Salimans, T., Kingma, D.P.: Weight normalization: A simple reparameterization to accelerate training of deep neural networks. Adv. Neural Inf. Process. Syst. 29, 901–909 (2016)

    Google Scholar 

  33. Soomro, K., Zamir, A.R., Shah, M.: Ucf101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)

  34. Sun, B., Feng, J., Saenko, K.: Return of frustratingly easy domain adaptation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30 (2016)

    Google Scholar 

  35. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  36. Viola, P., Wells, W.M., III.: Alignment by maximization of mutual information. Int. J. Comput. Vision 24(2), 137–154 (1997)

    Article  Google Scholar 

  37. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Advent: adversarial entropy minimization for domain adaptation in semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2517–2526 (2019)

    Google Scholar 

  38. Xia, H., Zhao, H., Ding, Z.: Adaptive adversarial network for source-free domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9010–9019 (2021)

    Google Scholar 

  39. Xie, S., Zheng, Z., Chen, L., Chen, C.: Learning semantic representations for unsupervised domain adaptation. In: International Conference on Machine Learning, pp. 5423–5432. PMLR (2018)

    Google Scholar 

  40. Xu, Y., Yang, J., Cao, H., Chen, Z., Li, Q., Mao, K.: Partial video domain adaptation with partial adversarial temporal attentive network. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9332–9341 (2021)

    Google Scholar 

  41. Xu, Y., Yang, J., Cao, H., Mao, K., Yin, J., See, S.: Aligning correlation information for domain adaptation in action recognition (2021)

    Google Scholar 

  42. Xu, Y., Yang, J., Cao, H., Mao, K., Yin, J., See, S.: ARID: a new dataset for recognizing action in the dark. In: Li, X., Wu, M., Chen, Z., Zhang, L. (eds.) DL-HAR 2021. CCIS, vol. 1370, pp. 70–84. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-0575-8_6

    Chapter  Google Scholar 

  43. Xu, Y., et al.: Multi-source video domain adaptation with temporal attentive moment alignment. arXiv preprint arXiv:2109.09964 (2021)

  44. Yang, J., Yang, J., Wang, S., Cao, S., Zou, H., Xie, L.: Advancing imbalanced domain adaptation: cluster-level discrepancy minimization with a comprehensive benchmark. IEEE Trans. Cybern., 1–12 (2021). https://doi.org/10.1109/TCYB.2021.3093888

  45. Yang, J., Zou, H., Zhou, Y., Zeng, Z., Xie, L.: Mind the discriminability: asymmetric adversarial domain adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12369, pp. 589–606. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58586-0_35

    Chapter  Google Scholar 

  46. Yang, J., An, W., Wang, S., Zhu, X., Yan, C., Huang, J.: Label-driven reconstruction for domain adaptation in semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12372, pp. 480–498. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58583-9_29

    Chapter  Google Scholar 

  47. Yang, S., Wang, Y., van de Weijer, J., Herranz, L., Jui, S.: Unsupervised domain adaptation without source data by casting a bait. arXiv preprint arXiv:2010.12427 (2020)

  48. Yeh, H.W., Yang, B., Yuen, P.C., Harada, T.: Sofa: source-data-free feature alignment for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 474–483 (2021)

    Google Scholar 

  49. Zhang, Y., Liu, T., Long, M., Jordan, M.: Bridging theory and algorithm for domain adaptation. In: International Conference on Machine Learning, pp. 7404–7413. PMLR (2019)

    Google Scholar 

  50. Zhou, B., Andonian, A., Oliva, A., Torralba, A.: Temporal relational reasoning in videos. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 803–818 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenghua Chen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 779 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Y., Yang, J., Cao, H., Wu, K., Wu, M., Chen, Z. (2022). Source-Free Video Domain Adaptation by Learning Temporal Consistency for Action Recognition. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13694. Springer, Cham. https://doi.org/10.1007/978-3-031-19830-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19830-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19829-8

  • Online ISBN: 978-3-031-19830-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics