Abstract
Current supervised cross-domain image retrieval methods can achieve excellent performance. However, the cost of data collection and labeling imposes an intractable barrier to practical deployment in real applications. In this paper, we investigate the unsupervised cross-domain image retrieval task, where class labels and pairing annotations are no longer a prerequisite for training. This is an extremely challenging task because there is no supervision for both in-domain feature representation learning and cross-domain alignment. We address both challenges by introducing: 1) a new cluster-wise contrastive learning mechanism to help extract class semantic-aware features, and 2) a novel distance-of-distance loss to effectively measure and minimize the domain discrepancy without any external supervision. Experiments on the Office-Home and DomainNet datasets consistently show the superior image retrieval accuracies of our framework over state-of-the-art approaches. Our source code can be found at https://github.com/conghuihu/UCDIR.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: ECCV (2018)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML (2020)
Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv (2020)
Damodaran, B.B., Kellenberger, B., Flamary, R., Tuia, D., Courty, N.: Deepjdot: deep joint distribution optimal transport for unsupervised domain adaptation. In: ECCV (2018)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR (2009)
Ganin, Y., et al.: Domain-adversarial training of neural networks. In: JMLR (2016)
Gao, B., Yang, Y., Gouk, H., Hospedales, T.M.: Deep clusteringwith concrete k-means. In: ICASSP (2020)
Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. In: ICLR (2018)
Goodfellow, I., et al.: Generative adversarial nets. In: NeurIPS (2014)
Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. In: JMLR (2012)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
Hoffman, J., et al.: Cycada: cycle-consistent adversarial domain adaptation. In: ICML (2018)
Kim, D., Saito, K., Oh, T.H., Plummer, B.A., Sclaroff, S., Saenko, K.: Cross-domain self-supervised learning for domain adaptation with few source labels. arXiv preprint arXiv:2003.08264 (2020)
Kim, D., Saito, K., Oh, T.H., Plummer, B.A., Sclaroff, S., Saenko, K.: CDS: Cross-domain self-supervised pre-training. In: ICCV (2021)
Li, J., Zhou, P., Xiong, C., Hoi, S.C.: Prototypical contrastive learning of unsupervised representations. In: ICLR (2020)
Long, M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with residual transfer networks. In: NeurIPS (2016)
Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks. In: ICML (2017)
Müller, H., Müller, W., Squire, D.M., Marchand-Maillet, S., Pun, T.: Performance evaluation in content-based image retrieval: overview and proposals. In: PR (2001)
Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving jigsaw puzzles. In: ECCV (2016)
Oord, A.V.D., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv (2018)
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: NeurIPS (2019)
Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: CVPR (2016)
Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., Wang, B.: Moment matching for multi-source domain adaptation. In: ICCV (2019)
Sangkloy, P., Burnell, N., Ham, C., Hays, J.: The sketchy database: learning to retrieve badly drawn bunnies. In: TOG (2016)
Shen, J., Qu, Y., Zhang, W., Yu, Y.: Wasserstein distance guided representation learning for domain adaptation. In: AAAI (2018)
Smeulders, A.W., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. In: TPAMI (2000)
Song, J., Yu, Q., Song, Y.Z., Xiang, T., Hospedales, T.M.: Deep spatial-semantic attention for fine-grained sketch-based image retrieval. In: ICCV (2017)
Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: CVPR (2017)
Villani, C.: Optimal transport. In: Old and New. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-71050-9
Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: CVPR (2018)
Yu, Q., Liu, F., Song, Y.Z., Xiang, T., Hospedales, T.M., Loy, C.C.: Sketch me that shoe. In: CVPR (2016)
Yue, X., et al: Prototypical cross-domain self-supervised learning for few-shot unsupervised domain adaptation. In: CVPR (2021)
Zhao, Y., et al.: Learning to generalize unseen domains via memory-based multi-source meta-learning for person re-identification. In: CVPR (2021)
Acknowledgements
This research/project is supported by the National Research Foundation, Singapore under its AI Singapore Programme (AISG Award No: AISG2-RP-2021-024), and the Tier 2 grant MOE-T2EP20120-0011 from the Singapore Ministry of Education.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hu, C., Lee, G.H. (2022). Feature Representation Learning for Unsupervised Cross-Domain Image Retrieval. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13697. Springer, Cham. https://doi.org/10.1007/978-3-031-19836-6_30
Download citation
DOI: https://doi.org/10.1007/978-3-031-19836-6_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19835-9
Online ISBN: 978-3-031-19836-6
eBook Packages: Computer ScienceComputer Science (R0)