Nothing Special   »   [go: up one dir, main page]

Skip to main content

Feature Representation Learning for Unsupervised Cross-Domain Image Retrieval

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13697))

Included in the following conference series:

Abstract

Current supervised cross-domain image retrieval methods can achieve excellent performance. However, the cost of data collection and labeling imposes an intractable barrier to practical deployment in real applications. In this paper, we investigate the unsupervised cross-domain image retrieval task, where class labels and pairing annotations are no longer a prerequisite for training. This is an extremely challenging task because there is no supervision for both in-domain feature representation learning and cross-domain alignment. We address both challenges by introducing: 1) a new cluster-wise contrastive learning mechanism to help extract class semantic-aware features, and 2) a novel distance-of-distance loss to effectively measure and minimize the domain discrepancy without any external supervision. Experiments on the Office-Home and DomainNet datasets consistently show the superior image retrieval accuracies of our framework over state-of-the-art approaches. Our source code can be found at https://github.com/conghuihu/UCDIR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: ECCV (2018)

    Google Scholar 

  2. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML (2020)

    Google Scholar 

  3. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv (2020)

    Google Scholar 

  4. Damodaran, B.B., Kellenberger, B., Flamary, R., Tuia, D., Courty, N.: Deepjdot: deep joint distribution optimal transport for unsupervised domain adaptation. In: ECCV (2018)

    Google Scholar 

  5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  6. Ganin, Y., et al.: Domain-adversarial training of neural networks. In: JMLR (2016)

    Google Scholar 

  7. Gao, B., Yang, Y., Gouk, H., Hospedales, T.M.: Deep clusteringwith concrete k-means. In: ICASSP (2020)

    Google Scholar 

  8. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. In: ICLR (2018)

    Google Scholar 

  9. Goodfellow, I., et al.: Generative adversarial nets. In: NeurIPS (2014)

    Google Scholar 

  10. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. In: JMLR (2012)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  12. Hoffman, J., et al.: Cycada: cycle-consistent adversarial domain adaptation. In: ICML (2018)

    Google Scholar 

  13. Kim, D., Saito, K., Oh, T.H., Plummer, B.A., Sclaroff, S., Saenko, K.: Cross-domain self-supervised learning for domain adaptation with few source labels. arXiv preprint arXiv:2003.08264 (2020)

  14. Kim, D., Saito, K., Oh, T.H., Plummer, B.A., Sclaroff, S., Saenko, K.: CDS: Cross-domain self-supervised pre-training. In: ICCV (2021)

    Google Scholar 

  15. Li, J., Zhou, P., Xiong, C., Hoi, S.C.: Prototypical contrastive learning of unsupervised representations. In: ICLR (2020)

    Google Scholar 

  16. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with residual transfer networks. In: NeurIPS (2016)

    Google Scholar 

  17. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks. In: ICML (2017)

    Google Scholar 

  18. Müller, H., Müller, W., Squire, D.M., Marchand-Maillet, S., Pun, T.: Performance evaluation in content-based image retrieval: overview and proposals. In: PR (2001)

    Google Scholar 

  19. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving jigsaw puzzles. In: ECCV (2016)

    Google Scholar 

  20. Oord, A.V.D., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv (2018)

    Google Scholar 

  21. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: NeurIPS (2019)

    Google Scholar 

  22. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: CVPR (2016)

    Google Scholar 

  23. Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., Wang, B.: Moment matching for multi-source domain adaptation. In: ICCV (2019)

    Google Scholar 

  24. Sangkloy, P., Burnell, N., Ham, C., Hays, J.: The sketchy database: learning to retrieve badly drawn bunnies. In: TOG (2016)

    Google Scholar 

  25. Shen, J., Qu, Y., Zhang, W., Yu, Y.: Wasserstein distance guided representation learning for domain adaptation. In: AAAI (2018)

    Google Scholar 

  26. Smeulders, A.W., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. In: TPAMI (2000)

    Google Scholar 

  27. Song, J., Yu, Q., Song, Y.Z., Xiang, T., Hospedales, T.M.: Deep spatial-semantic attention for fine-grained sketch-based image retrieval. In: ICCV (2017)

    Google Scholar 

  28. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: CVPR (2017)

    Google Scholar 

  29. Villani, C.: Optimal transport. In: Old and New. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-71050-9

  30. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: CVPR (2018)

    Google Scholar 

  31. Yu, Q., Liu, F., Song, Y.Z., Xiang, T., Hospedales, T.M., Loy, C.C.: Sketch me that shoe. In: CVPR (2016)

    Google Scholar 

  32. Yue, X., et al: Prototypical cross-domain self-supervised learning for few-shot unsupervised domain adaptation. In: CVPR (2021)

    Google Scholar 

  33. Zhao, Y., et al.: Learning to generalize unseen domains via memory-based multi-source meta-learning for person re-identification. In: CVPR (2021)

    Google Scholar 

Download references

Acknowledgements

This research/project is supported by the National Research Foundation, Singapore under its AI Singapore Programme (AISG Award No: AISG2-RP-2021-024), and the Tier 2 grant MOE-T2EP20120-0011 from the Singapore Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conghui Hu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 15255 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, C., Lee, G.H. (2022). Feature Representation Learning for Unsupervised Cross-Domain Image Retrieval. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13697. Springer, Cham. https://doi.org/10.1007/978-3-031-19836-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19836-6_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19835-9

  • Online ISBN: 978-3-031-19836-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics