Nothing Special   »   [go: up one dir, main page]

Skip to main content

Discriminability-Transferability Trade-Off: An Information-Theoretic Perspective

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13686))

Included in the following conference series:

Abstract

This work simultaneously considers the discriminability and transferability properties of deep representations in the typical supervised learning task, i.e., image classification. By a comprehensive temporal analysis, we observe a trade-off between these two properties. The discriminability keeps increasing with the training progressing while the transferability intensely diminishes in the later training period. From the perspective of information-bottleneck theory, we reveal that the incompatibility between discriminability and transferability is attributed to the over-compression of input information. More importantly, we investigate why and how the InfoNCE loss can alleviate the over-compression, and further present a learning framework, named contrastive temporal coding (CTC), to counteract the over-compression and alleviate the incompatibility. Extensive experiments validate that CTC successfully mitigates the incompatibility, yielding discriminative and transferable representations. Noticeable improvements are achieved on the image classification task and challenging transfer learning tasks. We hope that this work will raise the significance of the transferability property in the conventional supervised learning setting.

Q. Cui and B. Zhao—Equal contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Representations refer to the outputs of the backbone, which are processed with a global average pooling in popular models [17].

  2. 2.

    We use the Mutual Information Neural Estimation (MINE) [2] method to calculate the mutual information between continuous variables.

  3. 3.

    Proofs are attached in the appendix A.1.

References

  1. Alemi, A.A., Fischer, I., Dillon, J.V., Murphy, K.: Deep variational information bottleneck. In: ICLR (2017)

    Google Scholar 

  2. Belghazi, M.I., et al.: MINE: mutual information neural estimation. arXiv:1801.04062 (2018)

  3. Chen, C., Zheng, Z., Ding, X., Huang, Y., Dou, Q.: Harmonizing transferability and discriminability for adapting object detectors. In: CVPR (2020)

    Google Scholar 

  4. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML (2020)

    Google Scholar 

  5. Chen, T., Kornblith, S., Swersky, K., Norouzi, M., Hinton, G.: Big self-supervised models are strong semi-supervised learners. In: NeurIPS (2020)

    Google Scholar 

  6. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv:2003.04297 (2020)

  7. Chen, X., Wang, S., Long, M., Wang, J.: Transferability vs. discriminability: batch spectral penalization for adversarial domain adaptation. In: ICML (2019)

    Google Scholar 

  8. Coates, A., Ng, A., Lee, H.: An analysis of single-layer networks in unsupervised feature learning. In: AISTATS (2011)

    Google Scholar 

  9. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: AutoAugment: learning augmentation strategies from data. In: CVPR (2019)

    Google Scholar 

  10. Darlow, L.N., Crowley, E.J., Antoniou, A., Storkey, A.J.: CINIC-10 is not ImageNet or CIFAR-10. arXiv:1810.03505 (2018)

  11. Feng, Y., Jiang, J., Tang, M., Jin, R., Gao, Y.: Rethinking supervised pre-training for better downstream transferring. In: ICLR (2022)

    Google Scholar 

  12. Fu, J., Zheng, H., Mei, T.: Look closer to see better: recurrent attention convolutional neural network for fine-grained image recognition. In: CVPR (2017)

    Google Scholar 

  13. Furlanello, T., Lipton, Z., Tschannen, M., Itti, L., Anandkumar, A.: Born again neural networks. In: ICML (2018)

    Google Scholar 

  14. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR (2020)

    Google Scholar 

  15. He, K., Girshick, R., Dollár, P.: Rethinking ImageNet pre-training. In: ICCV (2019)

    Google Scholar 

  16. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)

    Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  18. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv:1503.02531 (2015)

  19. Hjelm, R.D., et al.: Learning deep representations by mutual information estimation and maximization. In: ICLR (2019)

    Google Scholar 

  20. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR (2018)

    Google Scholar 

  21. Kang, B., et al.: Decoupling representation and classifier for long-tailed recognition. In: ICLR (2020)

    Google Scholar 

  22. Khosla, P., et al.: Supervised contrastive learning. arXiv preprint arXiv:2004.11362 (2020)

  23. Kornblith, S., Chen, T., Lee, H., Norouzi, M.: Why do better loss functions lead to less transferable features? In: NeurIPS (2021)

    Google Scholar 

  24. Kornblith, S., Shlens, J., Le, Q.V.: Do better ImageNet models transfer better? In: CVPR (2019)

    Google Scholar 

  25. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  26. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR (2017)

    Google Scholar 

  27. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: ECCV (2014)

    Google Scholar 

  28. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)

    Google Scholar 

  29. Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep adaptation networks. In: ICML (2015)

    Google Scholar 

  30. Maji, S., Rahtu, E., Kannala, J., Blaschko, M., Vedaldi, A.: Fine-grained visual classification of aircraft. arXiv:1306.5151 (2013)

  31. Mao, H., Chen, X., Fu, Q., Du, L., Han, S., Zhang, D.: Neuron campaign for initialization guided by information bottleneck theory. In: CIKM (2021)

    Google Scholar 

  32. Oord, A.V.D., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv:1807.03748 (2018)

  33. Park, T., Efros, A.A., Zhang, R., Zhu, J.Y.: Contrastive learning for unpaired image-to-image translation. In: ECCV (2020)

    Google Scholar 

  34. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NeurIPS (2015)

    Google Scholar 

  35. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. In: IJCV (2015)

    Google Scholar 

  36. Sariyildiz, M.B., Kalantidis, Y., Larlus, D., Alahari, K.: Concept generalization in visual representation learning. In: ICCV (2021)

    Google Scholar 

  37. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: CVPR (2015)

    Google Scholar 

  38. Shao, J., Wen, X., Zhao, B., Xue, X.: Temporal context aggregation for video retrieval with contrastive learning. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) (2021)

    Google Scholar 

  39. Shwartz-Ziv, R., Tishby, N.: Opening the black box of deep neural networks via information. arXiv:1703.00810 (2017)

  40. Tian, Y., Krishnan, D., Isola, P.: Contrastive multiview coding. arXiv:1906.05849 (2019)

  41. Tian, Y., Sun, C., Poole, B., Krishnan, D., Schmid, C., Isola, P.: What makes for good views for contrastive learning? In: NeurIPS (2020)

    Google Scholar 

  42. Tishby, N., Zaslavsky, N.: Deep learning and the information bottleneck principle. In: ITW (2015)

    Google Scholar 

  43. Tripuraneni, N., Jordan, M., Jin, C.: On the theory of transfer learning: The importance of task diversity. In: NeurIPS (2020)

    Google Scholar 

  44. Van Horn, G., et al.: The INaturalist species classification and detection dataset. In: CVPR (2018)

    Google Scholar 

  45. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-ucsd birds-200-2011 dataset (2011)

    Google Scholar 

  46. Wang, X., Zhang, R., Shen, C., Kong, T., Li, L.: Dense contrastive learning for self-supervised visual pre-training. arXiv:2011.09157 (2020)

  47. Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A discriminative feature learning approach for deep face recognition. In: ECCV (2016)

    Google Scholar 

  48. Wu, M., Zhuang, C., Mosse, M., Yamins, D., Goodman, N.: On mutual information in contrastive learning for visual representations. arXiv:2005.13149 (2020)

  49. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: CVPR (2018)

    Google Scholar 

  50. Xiao, T., Li, S., Wang, B., Lin, L., Wang, X.: Joint detection and identification feature learning for person search. In: CVPR (2017)

    Google Scholar 

  51. Yalniz, I.Z., Jégou, H., Chen, K., Paluri, M., Mahajan, D.: Billion-scale semi-supervised learning for image classification. arXiv:1905.00546 (2019)

  52. You, K., Liu, Y., Wang, J., Long, M.: LogME: practical assessment of pre-trained models for transfer learning. In: ICML (2021)

    Google Scholar 

  53. Zhao, B., Cui, Q., Song, R., Qiu, Y., Liang, J.: Decoupled knowledge distillation. In: CVPR (2022)

    Google Scholar 

  54. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: CVPR (2017)

    Google Scholar 

  55. Zheng, H., Fu, J., Mei, T., Luo, J.: Learning multi-attention convolutional neural network for fine-grained image recognition. In: ICCV (2017)

    Google Scholar 

  56. Zhou, B., Cui, Q., Wei, X.S., Chen, Z.M.: BBN: bilateral-branch network with cumulative learning for long-tailed visual recognition. In: CVPR (2020)

    Google Scholar 

  57. Zhu, R., Zhao, B., Liu, J., Sun, Z., Chen, C.W.: Improving contrastive learning by visualizing feature transformation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  58. Zoph, B., et al.: Rethinking pre-training and self-training. In: NeurIPS (2020)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the Zhejiang Provincial Natural Science Foundation of China under Grant No. LQ22F020006. We thank anonymous reviewers from ECCV 2022 for insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renjie Song .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 400 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cui, Q. et al. (2022). Discriminability-Transferability Trade-Off: An Information-Theoretic Perspective. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13686. Springer, Cham. https://doi.org/10.1007/978-3-031-19809-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19809-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19808-3

  • Online ISBN: 978-3-031-19809-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics