Nothing Special   »   [go: up one dir, main page]

Skip to main content

Balancing Stability and Plasticity Through Advanced Null Space in Continual Learning

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13686))

Included in the following conference series:

Abstract

Continual learning is a learning paradigm that learns tasks sequentially with resources constraints, in which the key challenge is stability-plasticity dilemma, i.e., it is uneasy to simultaneously have the stability to prevent catastrophic forgetting of old tasks and the plasticity to learn new tasks well. In this paper, we propose a new continual learning approach, Advanced Null Space (AdNS), to balance the stability and plasticity without storing any old data of previous tasks. Specifically, to obtain better stability, AdNS makes use of low-rank approximation to obtain a novel null space and projects the gradient onto the null space to prevent the interference on the past tasks. To control the generation of the null space, we introduce a non-uniform constraint strength to further reduce forgetting. Furthermore, we present a simple but effective method, intra-task distillation, to improve the performance of the current task. Finally, we theoretically find that null space plays a key role in plasticity and stability, respectively. Experimental results show that the proposed method can achieve better performance compared to state-of-the-art continual learning approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We use the matrix whose columns are consisted of the orthonormal basis of the null space to represent null space.

  2. 2.

    We do not compare with replay-based methods because they store the data of previous tasks, which is out of the scope of this paper’s setting.

  3. 3.

    We extract \(k_l/2\) dimensions randomly from \(\textbf{U}_{\text {pre}}^l\) and another \(k_l/2\) dimensions randomly from \(\textbf{U}_{\text {cur}}^l\). If the dimension of \(\textbf{U}_{\text {pre}}^l\) or \(\textbf{U}_{\text {cur}}^l\) is smaller than \(k_l/2\), to make up \(k_l\) dimensions, we concatenate the whole matrix and the rest dimensions randomly extracted from another matrix.

  4. 4.

    \(\text {Max}(\cdot ), \text {Avg}(\cdot )\), and \(\text {Min}(\cdot )\) are functions that compute the maximum, average, and minimum values over inputs, respectively.

References

  1. Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., Tuytelaars, T.: Memory aware synapses: learning what (not) to forget. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 139–154 (2018)

    Google Scholar 

  2. Aljundi, R., et al.: Online continual learning with maximal interfered retrieval. In: Advances in Neural Information Processing Systems, pp. 11849–11860 (2019)

    Google Scholar 

  3. Aljundi, R., Chakravarty, P., Tuytelaars, T.: Expert gate: lifelong learning with a network of experts. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3366–3375 (2017)

    Google Scholar 

  4. Buzzega, P., Boschini, M., Porrello, A., Abati, D., Calderara, S.: Dark experience for general continual learning: a strong, simple baseline. arXiv preprint arXiv:2004.07211 (2020)

  5. Cha, S., Hsu, H., Hwang, T., Calmon, F.P., Moon, T.: CPR: classifier-projection regularization for continual learning. arXiv preprint arXiv:2006.07326 (2020)

  6. Chaudhry, A., Khan, N., Dokania, P.K., Torr, P.H.: Continual learning in low-rank orthogonal subspaces. arXiv preprint arXiv:2010.11635 (2020)

  7. Chaudhry, A., Ranzato, M., Rohrbach, M., Elhoseiny, M.: Efficient lifelong learning with a-gem. arXiv preprint arXiv:1812.00420 (2018)

  8. Chaudhry, A., et al.: Continual learning with tiny episodic memories (2019)

    Google Scholar 

  9. Chen, H.J., Cheng, A.C., Juan, D.C., Wei, W., Sun, M.: Mitigating forgetting in online continual learning via instance-aware parameterization. In: Advances in Neural Information Processing Systems, vol. 33 (2020)

    Google Scholar 

  10. Guo, Y., Liu, M., Yang, T., Rosing, T.: Improved schemes for episodic memory based lifelong learning algorithm. In: Conference on Neural Information Processing Systems (2020)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  12. Isele, D., Cosgun, A.: Selective experience replay for lifelong learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  13. Jerfel, G., Grant, E., Griffiths, T., Heller, K.A.: Reconciling meta-learning and continual learning with online mixtures of tasks. In: Advances in Neural Information Processing Systems, pp. 9122–9133 (2019)

    Google Scholar 

  14. Jing, Y., Yang, Y., Wang, X., Song, M., Tao, D.: Amalgamating knowledge from heterogeneous graph neural networks. In: CVPR (2021)

    Google Scholar 

  15. Jung, H., Ju, J., Jung, M., Kim, J.: Less-forgetting learning in deep neural networks. arXiv preprint arXiv:1607.00122 (2016)

  16. Kemker, R., McClure, M., Abitino, A., Hayes, T., Kanan, C.: Measuring catastrophic forgetting in neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  17. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. 114(13), 3521–3526 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  19. Lee, J., Hong, H.G., Joo, D., Kim, J.: Continual learning with extended kronecker-factored approximate curvature. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9001–9010 (2020)

    Google Scholar 

  20. Lee, K., Lee, K., Shin, J., Lee, H.: Overcoming catastrophic forgetting with unlabeled data in the wild. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 312–321 (2019)

    Google Scholar 

  21. Lee, S.W., Kim, J.H., Jun, J., Ha, J.W., Zhang, B.T.: Overcoming catastrophic forgetting by incremental moment matching. In: Advances in Neural Information Processing Systems, pp. 4652–4662 (2017)

    Google Scholar 

  22. Li, X., Zhou, Y., Wu, T., Socher, R., Xiong, C.: Learn to grow: a continual structure learning framework for overcoming catastrophic forgetting. arXiv preprint arXiv:1904.00310 (2019)

  23. Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2935–2947 (2017)

    Article  Google Scholar 

  24. Lin, S., Yang, L., Fan, D., Zhang, J.: TRGP: trust region gradient projection for continual learning (2022)

    Google Scholar 

  25. Liu, Yu., Parisot, S., Slabaugh, G., Jia, X., Leonardis, A., Tuytelaars, T.: More classifiers, less forgetting: a generic multi-classifier paradigm for incremental learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12371, pp. 699–716. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58574-7_42

    Chapter  Google Scholar 

  26. Lopez-Paz, D., Ranzato, M.: Gradient episodic memory for continual learning. In: Advances in Neural Information Processing Systems, pp. 6467–6476 (2017)

    Google Scholar 

  27. Mallya, A., Davis, D., Lazebnik, S.: Piggyback: adapting a single network to multiple tasks by learning to mask weights. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 67–82 (2018)

    Google Scholar 

  28. Mallya, A., Lazebnik, S.: Packnet: adding multiple tasks to a single network by iterative pruning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7765–7773 (2018)

    Google Scholar 

  29. Masse, N.Y., Grant, G.D., Freedman, D.J.: Alleviating catastrophic forgetting using context-dependent gating and synaptic stabilization. Proc. Natl. Acad. Sci. 115(44), E10467–E10475 (2018)

    Article  Google Scholar 

  30. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: the sequential learning problem. In: Psychology of Learning and Motivation, vol. 24, pp. 109–165. Elsevier (1989)

    Google Scholar 

  31. Mirzadeh, S.I., Farajtabar, M., Ghasemzadeh, H.: Dropout as an implicit gating mechanism for continual learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 232–233 (2020)

    Google Scholar 

  32. Mirzadeh, S.I., Farajtabar, M., Pascanu, R., Ghasemzadeh, H.: Understanding the role of training regimes in continual learning. In: Advances in Neural Information Processing Systems, vol. 33 (2020)

    Google Scholar 

  33. Nguyen, C.V., Li, Y., Bui, T.D., Turner, R.E.: Variational continual learning. arXiv preprint arXiv:1710.10628 (2017)

  34. Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong learning with neural networks: a review. Neural Netw. 113, 54–71 (2019)

    Article  Google Scholar 

  35. Park, D., Hong, S., Han, B., Lee, K.M.: Continual learning by asymmetric loss approximation with single-side overestimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3335–3344 (2019)

    Google Scholar 

  36. Rannen, A., Aljundi, R., Blaschko, M.B., Tuytelaars, T.: Encoder based lifelong learning. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1320–1328 (2017)

    Google Scholar 

  37. Rao, D., Visin, F., Rusu, A., Pascanu, R., Teh, Y.W., Hadsell, R.: Continual unsupervised representation learning. In: Advances in Neural Information Processing Systems, pp. 7647–7657 (2019)

    Google Scholar 

  38. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: ICARL: incremental classifier and representation learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2001–2010 (2017)

    Google Scholar 

  39. Riemer, M., et al.: Learning to learn without forgetting by maximizing transfer and minimizing interference. arXiv preprint arXiv:1810.11910 (2018)

  40. Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T., Wayne, G.: Experience replay for continual learning. In: Advances in Neural Information Processing Systems, pp. 350–360 (2019)

    Google Scholar 

  41. Rosenfeld, A., Tsotsos, J.K.: Incremental learning through deep adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 42(3), 651–663 (2018)

    Article  Google Scholar 

  42. Rusu, A.A., et al.: Progressive neural networks. arXiv preprint arXiv:1606.04671 (2016)

  43. Saha, G., Garg, I., Roy, K.: Gradient projection memory for continual learning. In: International Conference on Learning Representations (2021). https://openreview.net/forum?id=3AOj0RCNC2

  44. Serra, J., Suris, D., Miron, M., Karatzoglou, A.: Overcoming catastrophic forgetting with hard attention to the task. In: International Conference on Machine Learning, pp. 4548–4557. PMLR (2018)

    Google Scholar 

  45. Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative replay. In: Advances in Neural Information Processing Systems, pp. 2990–2999 (2017)

    Google Scholar 

  46. Stanford: Tiny ImageNet Challenge (CS231n) (2015). https://tiny-imagenet.herokuapp.com/

  47. Tang, S., Chen, D., Zhu, J., Yu, S., Ouyang, W.: Layerwise optimization by gradient decomposition for continual learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9634–9643 (2021)

    Google Scholar 

  48. Tani, J.: Exploring Robotic Minds: Actions, Symbols, and Consciousness as Self-organizing Dynamic Phenomena. Oxford University Press, Oxford (2016)

    Book  Google Scholar 

  49. Wang, S., Li, X., Sun, J., Xu, Z.: Training networks in null space of feature covariance for continual learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 184–193, June 2021

    Google Scholar 

  50. Wang, Z., Liu, L., Duan, Y., Kong, Y., Tao, D.: Continual learning with lifelong vision transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 171–181, June 2022

    Google Scholar 

  51. Wang, Z., Liu, L., Duan, Y., Tao, D.: Continual learning through retrieval and imagination. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 8, pp. 8594–8602 (2022). https://doi.org/10.1609/aaai.v36i8.20837. https://ojs.aaai.org/index.php/AAAI/article/view/20837

  52. Wang, Z., Liu, L., Tao, D.: Deep streaming label learning. In: International Conference on Machine Learning (ICML), vol. 119, pp. 9963–9972 (2020)

    Google Scholar 

  53. Wu, L., Liu, B., Stone, P., Liu, Q.: Firefly neural architecture descent: a general approach for growing neural networks. In: Advances in Neural Information Processing Systems, vol. 33 (2020)

    Google Scholar 

  54. Yiduo, G., Wenpeng, H., Dongyan, Z., Bing, L.: Adaptive orthogonal projection for continual learning. In: AAAI (2022)

    Google Scholar 

  55. Yin, D., Farajtabar, M., Li, A., Levine, N., Mott, A.: Optimization and generalization of regularization-based continual learning: a loss approximation viewpoint (2020)

    Google Scholar 

  56. Yoon, J., Kim, S., Yang, E., Hwang, S.J.: Scalable and order-robust continual learning with additive parameter decomposition. arXiv preprint arXiv:1902.09432 (2019)

  57. Zeng, G., Chen, Y., Cui, B., Yu, S.: Continual learning of context-dependent processing in neural networks. Nat. Mach. Intell. (NMI) 1(8), 364–372 (2019)

    Article  Google Scholar 

  58. Zenke, F., Poole, B., Ganguli, S.: Continual learning through synaptic intelligence. In: International Conference on Machine Learning, pp. 3987–3995. PMLR (2017)

    Google Scholar 

  59. Zhang, J., et al.: Class-incremental learning via deep model consolidation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1131–1140 (2020)

    Google Scholar 

  60. Zhou, G., Sohn, K., Lee, H.: Online incremental feature learning with denoising autoencoders. In: Artificial Intelligence and Statistics, pp. 1453–1461 (2012)

    Google Scholar 

Download references

Acknowledgements

Ms Yajing Kong and Dr Liu Liu are supported by ARC FL-170100117 and DP-180103424.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dacheng Tao .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 359 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kong, Y., Liu, L., Wang, Z., Tao, D. (2022). Balancing Stability and Plasticity Through Advanced Null Space in Continual Learning. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13686. Springer, Cham. https://doi.org/10.1007/978-3-031-19809-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19809-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19808-3

  • Online ISBN: 978-3-031-19809-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics