Nothing Special   »   [go: up one dir, main page]

Skip to main content

Eliminating Gradient Conflict in Reference-based Line-Art Colorization

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13677))

Included in the following conference series:

Abstract

Reference-based line-art colorization is a challenging task in computer vision. The color, texture, and shading are rendered based on an abstract sketch, which heavily relies on the precise long-range dependency modeling between the sketch and reference. Popular techniques to bridge the cross-modal information and model the long-range dependency employ the attention mechanism. However, in the context of reference-based line-art colorization, several techniques would intensify the existing training difficulty of attention, for instance, self-supervised training protocol and GAN-based losses. To understand the instability in training, we detect the gradient flow of attention and observe gradient conflict among attention branches. This phenomenon motivates us to alleviate the gradient issue by preserving the dominant gradient branch while removing the conflict ones. We propose a novel attention mechanism using this training strategy, Stop-Gradient Attention (SGA), outperforming the attention baseline by a large margin with better training stability. Compared with state-of-the-art modules in line-art colorization, our approach demonstrates significant improvements in Fréchet Inception Distance (FID, up to 27.21%) and structural similarity index measure (SSIM, up to 25.67%) on several benchmarks. The code of SGA is available at https://github.com/kunkun0w0/SGA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., Schmid, C.: Vivit: a video vision transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6836–6846 (2021)

    Google Scholar 

  2. Casey, E., Perez, V., Li, Z.: The animation transformer: visual correspondence via segment matching. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 11323–11332 (2021)

    Google Scholar 

  3. Chen, X., Hsieh, C.J., Gong, B.: When vision transformers outperform resnets without pretraining or strong data augmentations. arXiv preprint arXiv:2106.01548 (2021)

  4. Chen, X., He, K.: Exploring simple siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15750–15758 (2021)

    Google Scholar 

  5. Chen, X., Xie, S., He, K.: An empirical study of training self-supervised vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9640–9649 (2021)

    Google Scholar 

  6. Chen, Y., Kalantidis, Y., Li, J., Yan, S., Feng, J.: A \(\wedge \) 2-nets: double attention networks. In: Advances in Neural Information Processing Systems, vol. 31, pp. 352–361 (2018)

    Google Scholar 

  7. Chen, Y., Rohrbach, M., Yan, Z., Shuicheng, Y., Feng, J., Kalantidis, Y.: Graph-based global reasoning networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  8. Choi, Y., Uh, Y., Yoo, J., Ha, J.W.: Stargan v2: diverse image synthesis for multiple domains. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  9. Cuturi, M.: Sinkhorn distances: Lightspeed computation of optimal transport. Adv. Neural. Inf. Process. Syst. 26, 2292–2300 (2013)

    Google Scholar 

  10. Dai, Z., Yang, Z., Yang, Y., Carbonell, J.G., Le, Q., Salakhutdinov, R.: Transformer-xl: attentive language models beyond a fixed-length context. In: Annual Meeting of the Association for Computational Linguistics (ACL), pp. 2978–2988 (2019)

    Google Scholar 

  11. Dosovitskiy, A., et al.: An image is worth 16 \(\times \) 16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (2021)

    Google Scholar 

  12. Dou, Z., Wang, N., Li, B., Wang, Z., Li, H., Liu, B.: Dual color space guided sketch colorization. IEEE Trans. Image Process. 30, 7292–7304 (2021)

    Article  Google Scholar 

  13. Geng, Z., Guo, M.H., Chen, H., Li, X., Wei, K., Lin, Z.: Is attention better than matrix decomposition? In: International Conference on Learning Representations (2021)

    Google Scholar 

  14. Geng, Z., Zhang, X.Y., Bai, S., Wang, Y., Lin, Z.: On training implicit models. In: Thirty-Fifth Conference on Neural Information Processing Systems (2021)

    Google Scholar 

  15. Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27 (2014)

    Google Scholar 

  16. Guo, M.H., Cai, J.X., Liu, Z.N., Mu, T.J., Martin, R.R., Hu, S.M.: PCT: point cloud transformer. Comput. Visual Media 7(2), 187–199 (2021). https://doi.org/10.1007/s41095-021-0229-5

    Article  Google Scholar 

  17. Guo, M.H., Liu, Z.N., Mu, T.J., Hu, S.M.: Beyond self-attention: external attention using two linear layers for visual tasks. arXiv preprint arXiv:2105.02358 (2021)

  18. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  19. He, L., Dong, Y., Wang, Y., Tao, D., Lin, Z.: Gauge equivariant transformer. Adv. Neural. Inf. Process. Syst. 34, 27331–27343 (2021)

    Google Scholar 

  20. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  21. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  22. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: European Conference on Computer Vision (2016)

    Google Scholar 

  23. Kang, Z., Peng, C., Cheng, J., Cheng, Q.: Logdet rank minimization with application to subspace clustering. Comput. Intell. Neurosci. 2015 (2015)

    Google Scholar 

  24. Katharopoulos, A., Vyas, A., Pappas, N., Fleuret, F.: Transformers are RNNs: fast autoregressive transformers with linear attention. In: International Conference on Machine Learning, pp. 5156–5165. PMLR (2020)

    Google Scholar 

  25. Kim, H., Jhoo, H.Y., Park, E., Yoo, S.: Tag2pix: line art colorization using text tag with secat and changing loss. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9056–9065 (2019)

    Google Scholar 

  26. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  27. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations. ICLR 2017 (2017)

    Google Scholar 

  28. Lee, J., Kim, E., Lee, Y., Kim, D., Chang, J., Choo, J.: Reference-based sketch image colorization using augmented-self reference and dense semantic correspondence. In: The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  29. Li, X., Zhong, Z., Wu, J., Yang, Y., Lin, Z., Liu, H.: Expectation-maximization attention networks for semantic segmentation. In: International Conference on Computer Vision (2019)

    Google Scholar 

  30. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  31. LvMin Zhang, Y.J., Liu, C.: Style transfer for anime sketches with enhanced residual u-net and auxiliary classifier GAN. In: Asian Conference on Pattern Recognition (ACPR) (2017)

    Google Scholar 

  32. Maejima, A., Kubo, H., Funatomi, T., Yotsukura, T., Nakamura, S., Mukaigawa, Y.: Graph matching based anime colorization with multiple references. In: ACM SIGGRAPH 2019 (2019)

    Google Scholar 

  33. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  34. Neimark, D., Bar, O., Zohar, M., Asselmann, D.: Video transformer network. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, pp. 3163–3172 (2021)

    Google Scholar 

  35. van den Oord, A., Vinyals, O., Kavukcuoglu, K.: Neural discrete representation learning. In: NIPS (2017)

    Google Scholar 

  36. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  37. Roy, A., Saffar, M.T., Vaswani, A., Grangier, D.: Efficient content-based sparse attention with routing transformers. Trans. Assoc. Comput. Linguist. 9, 53–68 (2021)

    Article  Google Scholar 

  38. Sun, T.H., Lai, C.H., Wong, S.K., Wang, Y.S.: Adversarial colorization of icons based on contour and color conditions. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 683–691 (2019)

    Google Scholar 

  39. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention. In: International Conference on Machine Learning, pp. 10347–10357. PMLR (2021)

    Google Scholar 

  40. Tseng, H.-Y., Fisher, M., Lu, J., Li, Y., Kim, V., Yang, M.-H.: Modeling artistic workflows for image generation and editing. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 158–174. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_10

    Chapter  Google Scholar 

  41. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  42. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  43. Wang, R., Yan, J., Yang, X.: Learning combinatorial embedding networks for deep graph matching. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3056–3065 (2019)

    Google Scholar 

  44. Wang, S., Li, B.Z., Khabsa, M., Fang, H., Ma, H.: Linformer: self-attention with linear complexity. ArXiv abs/2006.04768 (2020)

    Google Scholar 

  45. Wang, W., et al.: Pyramid vision transformer: a versatile backbone for dense prediction without convolutions. In: IEEE ICCV (2021)

    Google Scholar 

  46. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7794–7803 (2018)

    Google Scholar 

  47. Winnemöller, H., Kyprianidis, J.E., Olsen, S.C.: XDoG: an extended difference-of-gaussians compendium including advanced image stylization. Comput. Graph. 36(6), 740–753 (2012)

    Article  Google Scholar 

  48. Wu, H., et al.: Cvt: introducing convolutions to vision transformers. arXiv preprint arXiv:2103.15808 (2021)

  49. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In: International Conference on Machine Learning (ICML), pp. 2048–2057 (2015)

    Google Scholar 

  50. Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K., Finn, C.: Gradient surgery for multi-task learning. Adv. Neural. Inf. Process. Syst. 33, 5824–5836 (2020)

    Google Scholar 

  51. Zhan, F., et al.: Unbalanced feature transport for exemplar-based image translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15028–15038 (2021)

    Google Scholar 

  52. Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: ICML (2019)

    Google Scholar 

  53. Zhang, L., Li, C., Simo-Serra, E., Ji, Y., Wong, T.T., Liu, C.: User-guided line art flat filling with split filling mechanism. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  54. Zhang, P., Zhang, B., Chen, D., Yuan, L., Wen, F.: Cross-domain correspondence learning for exemplar-based image translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5143–5153 (2020)

    Google Scholar 

  55. Zhang, Q., Wang, B., Wen, W., Li, H., Liu, J.: Line art correlation matching feature transfer network for automatic animation colorization. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 3872–3881 (2021)

    Google Scholar 

  56. Zhang, R.Y., et al.: Real-time user-guided image colorization with learned deep priors. ACM Trans. Graph. 36(4), 119 (2017)

    Article  Google Scholar 

  57. Zhang, S., Yan, S., He, X.: LatentGNN: learning efficient non-local relations for visual recognition. In: International Conference on Machine Learning (ICML). Proceedings of Machine Learning Research, vol. 97, pp. 7374–7383. PMLR (2019)

    Google Scholar 

  58. Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16259–16268 (2021)

    Google Scholar 

  59. Zhou, X., et al.: Cocosnet v2: full-resolution correspondence learning for image translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11465–11475 (2021)

    Google Scholar 

  60. Zhu, P., Abdal, R., Qin, Y., Wonka, P.: Sean: image synthesis with semantic region-adaptive normalization. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

Download references

Acknowledgment

This research was funded in part by the Sichuan Science and Technology Program (Nos. 2021YFG0018, 2022YFG0038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Kang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 9369 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Z., Geng, Z., Kang, Z., Chen, W., Yang, Y. (2022). Eliminating Gradient Conflict in Reference-based Line-Art Colorization. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13677. Springer, Cham. https://doi.org/10.1007/978-3-031-19790-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19790-1_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19789-5

  • Online ISBN: 978-3-031-19790-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics