Nothing Special   »   [go: up one dir, main page]

Skip to main content

Blind Image Decomposition

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13678))

Included in the following conference series:

Abstract

We propose and study a novel task named Blind Image Decomposition (BID), which requires separating a superimposed image into constituent underlying images in a blind setting, that is, both the source components involved in mixing as well as the mixing mechanism are unknown. For example, rain may consist of multiple components, such as rain streaks, raindrops, snow, and haze. Rainy images can be treated as an arbitrary combination of these components, some of them or all of them. How to decompose superimposed images, like rainy images, into distinct source components is a crucial step toward real-world vision systems. To facilitate research on this new task, we construct multiple benchmark datasets, including mixed image decomposition across multiple domains, real-scenario deraining, and joint shadow/reflection/watermark removal. Moreover, we propose a simple yet general Blind Image Decomposition Network (BIDeN) to serve as a strong baseline for future work. Experimental results demonstrate the tenability of our benchmarks and the effectiveness of BIDeN.

Codes and datasets are available at GitHub.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alayrac, J.B., Carreira, J., Zisserman, A.: The visual centrifuge: model-free layered video representations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2457–2466 (2019)

    Google Scholar 

  2. Alhaija, H.A., et al.: Intrinsic autoencoders for joint deferred neural rendering and intrinsic image decomposition. In: 2020 International Conference on 3D Vision (3DV), pp. 1176–1185. IEEE (2020)

    Google Scholar 

  3. Alpert, S., Galun, M., Brandt, A., Basri, R.: Image segmentation by probabilistic bottom-up aggregation and cue integration. IEEE Trans. Pattern Anal. Mach. Intell. 34(2), 315–327 (2011)

    Article  Google Scholar 

  4. Asha, C., Bhat, S.K., Nayak, D., Bhat, C.: Auto removal of bright spot from images captured against flashing light source. In: 2019 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), pp. 1–6. IEEE (2019)

    Google Scholar 

  5. Berman, D., Avidan, S., et al.: Non-local image dehazing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1674–1682 (2016)

    Google Scholar 

  6. Blinn, J.F.: A generalization of algebraic surface drawing. ACM Trans. Graph. (TOG) 1(3), 235–256 (1982)

    Article  Google Scholar 

  7. Chen, X., et al.: ReFit: a unified watermark removal framework for deep learning systems with limited data. In: Proceedings of the 2021 ACM Asia Conference on Computer and Communications Security, pp. 321–335 (2021)

    Google Scholar 

  8. Chen, Z., Long, C., Zhang, L., Xiao, C.: CaNet: a context-aware network for shadow removal. In: ICCV, pp. 4743–4752 (2021)

    Google Scholar 

  9. Cichocki, A., Amari, S.I.: Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications. Wiley, Hoboken (2002)

    Google Scholar 

  10. Cohen, J., Olano, M., Manocha, D.: Appearance-preserving simplification. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 115–122 (1998)

    Google Scholar 

  11. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)

    Google Scholar 

  12. Cun, X., Pun, C.M., Shi, C.: Towards ghost-free shadow removal via dual hierarchical aggregation network and shadow matting GAN. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 10680–10687 (2020)

    Google Scholar 

  13. Ding, B., Long, C., Zhang, L., Xiao, C.: ArGAN: attentive recurrent generative adversarial network for shadow detection and removal. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10213–10222 (2019)

    Google Scholar 

  14. Du, C., Kang, B., Xu, Z., Dai, J., Nguyen, T.: Accurate and efficient video de-fencing using convolutional neural networks and temporal information. In: 2018 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2018)

    Google Scholar 

  15. Fadili, M.J., Starck, J.L., Bobin, J., Moudden, Y.: Image decomposition and separation using sparse representations: an overview. Proc. IEEE 98(6), 983–994 (2009)

    Article  Google Scholar 

  16. Faktor, A., Irani, M.: Co-segmentation by composition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1297–1304 (2013)

    Google Scholar 

  17. Fan, Q., Yang, J., Hua, G., Chen, B., Wipf, D.: A generic deep architecture for single image reflection removal and image smoothing. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3238–3247 (2017)

    Google Scholar 

  18. Finlayson, G.D., Drew, M.S., Lu, C.: Entropy minimization for shadow removal. Int. J. Comput. Vision 85(1), 35–57 (2009)

    Article  Google Scholar 

  19. Fu, L., et al.: Auto-exposure fusion for single-image shadow removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10571–10580 (2021)

    Google Scholar 

  20. Gai, K., Shi, Z., Zhang, C.: Blindly separating mixtures of multiple layers with spatial shifts. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

    Google Scholar 

  21. Gai, K., Shi, Z., Zhang, C.: Blind separation of superimposed images with unknown motions. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1881–1888. IEEE (2009)

    Google Scholar 

  22. Galdran, A., Pardo, D., Picón, A., Alvarez-Gila, A.: Automatic red-channel underwater image restoration. J. Vis. Commun. Image Represent. 26, 132–145 (2015)

    Article  Google Scholar 

  23. Gandelsman, Y., Shocher, A., Irani, M.: “double-dip”: Unsupervised image decomposition via coupled deep-image-priors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11026–11035 (2019)

    Google Scholar 

  24. Gong, H., Cosker, D.: Interactive shadow removal and ground truth for variable scene categories. In: BMVC, pp. 1–11. Citeseer (2014)

    Google Scholar 

  25. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems (2014)

    Google Scholar 

  26. Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017)

    Google Scholar 

  27. Guo, R., Dai, Q., Hoiem, D.: Paired regions for shadow detection and removal. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2956–2967 (2012)

    Article  Google Scholar 

  28. Halperin, T., Ephrat, A., Hoshen, Y.: Neural separation of observed and unobserved distributions. In: International Conference on Machine Learning, pp. 2566–2575. PMLR (2019)

    Google Scholar 

  29. Han, J., et al.: Underwater image restoration via contrastive learning and a real-world dataset. arXiv preprint arXiv:2106.10718 (2021)

  30. Han, J., Shoeiby, M., Petersson, L., Armin, M.A.: Dual contrastive learning for unsupervised image-to-image translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2021)

    Google Scholar 

  31. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2010)

    Google Scholar 

  32. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local NASH equilibrium. In: Advances in Neural Information Processing Systems (2017)

    Google Scholar 

  33. Hu, X., Fu, C.W., Zhu, L., Qin, J., Heng, P.A.: Direction-aware spatial context features for shadow detection and removal. IEEE Trans. Pattern Anal. Mach. Intell. 42(11), 2795–2808 (2019)

    Article  Google Scholar 

  34. Hyvärinen, A., Oja, E.: A fast fixed-point algorithm for independent component analysis. Neural Comput. 9(7), 1483–1492 (1997)

    Article  Google Scholar 

  35. Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Netw. 13(4–5), 411–430 (2000)

    Article  Google Scholar 

  36. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  37. Jayaram, V., Thickstun, J.: Source separation with deep generative priors. In: International Conference on Machine Learning, pp. 4724–4735. PMLR (2020)

    Google Scholar 

  38. Jin, Y., Sharma, A., Tan, R.T.: DC-ShadowNet: single-image hard and soft shadow removal using unsupervised domain-classifier guided network. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5027–5036 (2021)

    Google Scholar 

  39. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  40. Kang, L.W., Lin, C.W., Fu, Y.H.: Automatic single-image-based rain streaks removal via image decomposition. IEEE Trans. Image Process. 21(4), 1742–1755 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)

    Google Scholar 

  42. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. International Conference on Learning Representations (ICLR) (2014)

    Google Scholar 

  43. Kong, Q., Xu, Y., Wang, W., Jackson, P.J., Plumbley, M.D.: Single-channel signal separation and deconvolution with generative adversarial networks. arXiv preprint arXiv:1906.07552 (2019)

  44. Le, H., Samaras, D.: Shadow removal via shadow image decomposition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8578–8587 (2019)

    Google Scholar 

  45. Lee, T.W., Lewicki, M.S., Sejnowski, T.J.: Ica mixture models for unsupervised classification of non-Gaussian classes and automatic context switching in blind signal separation. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1078–1089 (2000)

    Article  Google Scholar 

  46. Li, C., Yang, Y., He, K., Lin, S., Hopcroft, J.E.: Single image reflection removal through cascaded refinement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3565–3574 (2020)

    Google Scholar 

  47. Li, R., Pan, J., Li, Z., Tang, J.: Single image dehazing via conditional generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8202–8211 (2018)

    Google Scholar 

  48. Li, R., Tan, R.T., Cheong, L.F.: All in one bad weather removal using architectural search. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3175–3185 (2020)

    Google Scholar 

  49. Li, S., et al.: Single image deraining: a comprehensive benchmark analysis. In: CVPR, pp. 3838–3847 (2019)

    Google Scholar 

  50. Li, W., Hosseini Jafari, O., Rother, C.: Deep object co-segmentation. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 638–653. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_40

    Chapter  Google Scholar 

  51. Li, X., Wu, J., Lin, Z., Liu, H., Zha, H.: Recurrent squeeze-and-excitation context aggregation net for single image deraining. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 262–277. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_16

    Chapter  Google Scholar 

  52. Lin, S., Ryabtsev, A., Sengupta, S., Curless, B.L., Seitz, S.M., Kemelmacher-Shlizerman, I.: Real-time high-resolution background matting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8762–8771 (2021)

    Google Scholar 

  53. Liu, Y., Zhu, Z., Bai, X.: WDNet: watermark-decomposition network for visible watermark removal. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3685–3693 (2021)

    Google Scholar 

  54. Liu, Y.L., Lai, W.S., Yang, M.H., Chuang, Y.Y., Huang, J.B.: Learning to see through obstructions with layered decomposition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  55. Liu, Y.F., Jaw, D.W., Huang, S.C., Hwang, J.N.: DesnowNet: context-aware deep network for snow removal. IEEE Trans. Image Process. 27(6), 3064–3073 (2018)

    Article  MathSciNet  Google Scholar 

  56. Ma, D., Wan, R., Shi, B., Kot, A.C., Duan, L.Y.: Learning to jointly generate and separate reflections. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2444–2452 (2019)

    Google Scholar 

  57. Man, Z., Fu, X., Xiao, Z., Yang, G., Liu, A., Xiong, Z.: Unfolding Taylor’s approximations for image restoration. Adv. Neural. Inf. Process. Syst. 34, 18997–19009 (2021)

    Google Scholar 

  58. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares generative adversarial networks. In: IEEE International Conference on Computer Vision (ICCV), pp. 2794–2802 (2017)

    Google Scholar 

  59. Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  60. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “completely blind” image quality analyzer. IEEE Sig. Process. Lett. 20(3), 209–212 (2012)

    Google Scholar 

  61. Nayar, S.K., Narasimhan, S.G.: Vision in bad weather. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 820–827. IEEE (1999)

    Google Scholar 

  62. Nilsback, M.E., Zisserman, A.: A visual vocabulary for flower classification. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 2, pp. 1447–1454. IEEE (2006)

    Google Scholar 

  63. Oliveira, P.R., Romero, R.A.: Improvements on ICA mixture models for image pre-processing and segmentation. Neurocomputing 71(10–12), 2180–2193 (2008)

    Article  Google Scholar 

  64. Porav, H., Bruls, T., Newman, P.: I can see clearly now: Image restoration via de-raining. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 7087–7093. IEEE (2019)

    Google Scholar 

  65. Qian, R., Tan, R.T., Yang, W., Su, J., Liu, J.: Attentive generative adversarial network for raindrop removal from a single image. In: CVPR, pp. 2482–2491 (2018)

    Google Scholar 

  66. Qu, L., Tian, J., He, S., Tang, Y., Lau, R.W.: DeShadowNet: a multi-context embedding deep network for shadow removal. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4067–4075 (2017)

    Google Scholar 

  67. Quan, R., Yu, X., Liang, Y., Yang, Y.: Removing raindrops and rain streaks in one go. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9147–9156 (2021)

    Google Scholar 

  68. Ren, W., Tian, J., Han, Z., Chan, A., Tang, Y.: Video desnowing and deraining based on matrix decomposition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4210–4219 (2017)

    Google Scholar 

  69. Rother, C., Kolmogorov, V., Blake, A.: “ grabcut” interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. (TOG) 23(3), 309–314 (2004)

    Google Scholar 

  70. Sakaridis, C., Dai, D., Van Gool, L.: Semantic foggy scene understanding with synthetic data. Int. J. Comput. Vision 126(9), 973–992 (2018)

    Article  Google Scholar 

  71. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  72. Tan, R.T.: Visibility in bad weather from a single image. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

    Google Scholar 

  73. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

  74. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9446–9454 (2018)

    Google Scholar 

  75. Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020)

    Google Scholar 

  76. Wang, J., Li, X., Yang, J.: Stacked conditional generative adversarial networks for jointly learning shadow detection and shadow removal. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1788–1797 (2018)

    Google Scholar 

  77. Wang, Z., Philion, J., Fidler, S., Kautz, J.: Learning indoor inverse rendering with 3D spatially-varying lighting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12538–12547 (2021)

    Google Scholar 

  78. Wu, Y., et al.: How to train neural networks for flare removal. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2021)

    Google Scholar 

  79. Xiao, J., Zhou, M., Fu, X., Liu, A., Zha, Z.J.: Improving de-raining generalization via neural reorganization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4987–4996 (2021)

    Google Scholar 

  80. Xue, T., Rubinstein, M., Liu, C., Freeman, W.T.: A computational approach for obstruction-free photography. ACM Trans. Graph. (TOG) 34(4), 1–11 (2015)

    Article  Google Scholar 

  81. Yang, Q., Tan, K.H., Ahuja, N.: Shadow removal using bilateral filtering. IEEE Trans. Image Process. 21(10), 4361–4368 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  82. Yang, W., Tan, R.T., Feng, J., Liu, J., Guo, Z., Yan, S.: Deep joint rain detection and removal from a single image. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1685–1694 (2017). https://doi.org/10.1109/CVPR.2017.183

  83. Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H.: ReStormer: efficient transformer for high-resolution image restoration. In: CVPR (2022)

    Google Scholar 

  84. Zamir, S.W., et al.: Multi-stage progressive image restoration. In: CVPR (2021)

    Google Scholar 

  85. Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363. PMLR (2019)

    Google Scholar 

  86. Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE Trans. Circuits Syst. Video Technol. 30(11), 3943–3956 (2019)

    Article  Google Scholar 

  87. Zhang, K., Li, D., Luo, W., Ren, W., Liu, W.: Enhanced spatio-temporal interaction learning for video deraining: a faster and better framework. IEEE Trans. Pattern Anal. Mach. Intell. (2022)

    Google Scholar 

  88. Zhang, K., Li, D., Luo, W., Ren, W., Ma, L., Li, H.: Dual attention-in-attention model for joint rain streak and raindrop removal. arXiv preprint arXiv:2103.07051 (2021)

  89. Zhang, K., et al.: Beyond monocular deraining: stereo image deraining via semantic understanding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12372, pp. 71–89. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58583-9_5

    Chapter  Google Scholar 

  90. Zhang, K., et al.: Beyond monocular deraining: parallel stereo deraining network via semantic prior. Int. J. Comput. Vision, 1–16 (2022)

    Google Scholar 

  91. Zhang, X., Ng, R., Chen, Q.: Single image reflection separation with perceptual losses. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4786–4794 (2018)

    Google Scholar 

  92. Zhong, Y., Dai, Y., Li, H.: Stereo computation for a single mixture image. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 441–456. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_27

    Chapter  Google Scholar 

  93. Zhou, M., Wang, F., Wei, X., Wang, R., Wang, X.: PID controller-inspired model design for single image de-raining. IEEE Trans. Circuits Syst. II Express Briefs 69(4), 2351–2355 (2021)

    Google Scholar 

  94. Zhou, M., Wang, R.: Control theory-inspired model design for single image de-raining. IEEE Trans. Circuits Syst. II Express Briefs 69(2), 649–653 (2021)

    MathSciNet  Google Scholar 

  95. Zhou, M., et al.: Image de-raining via continual learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4907–4916 (2021)

    Google Scholar 

  96. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

  97. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

  98. Zou, Z., Lei, S., Shi, T., Shi, Z., Ye, J.: Deep adversarial decomposition: a unified framework for separating superimposed images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12806–12816 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junlin Han .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 10252 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, J. et al. (2022). Blind Image Decomposition. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13678. Springer, Cham. https://doi.org/10.1007/978-3-031-19797-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19797-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19796-3

  • Online ISBN: 978-3-031-19797-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics