Nothing Special   »   [go: up one dir, main page]

Skip to main content

3D-Aware Indoor Scene Synthesis with Depth Priors

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13676))

Included in the following conference series:

Abstract

Despite the recent advancement of Generative Adversarial Networks (GANs) in learning 3D-aware image synthesis from 2D data, existing methods fail to model indoor scenes due to the large diversity of room layouts and the objects inside. We argue that indoor scenes do not have a shared intrinsic structure, and hence only using 2D images cannot adequately guide the model with the 3D geometry. In this work, we fill in this gap by introducing depth as a 3D prior (Depth is essentially a 2.5D prior, but in this paper we use 3D for simplicity). Compared with other 3D data formats, depth better fits the convolution-based generation mechanism and is more easily accessible in practice. Specifically, we propose a dual-path generator, where one path is responsible for depth generation, whose intermediate features are injected into the other path as the condition for appearance rendering. Such a design eases the 3D-aware synthesis with explicit geometry information. Meanwhile, we introduce a switchable discriminator both to differentiate real v.s. fake domains and to predict the depth from a given input. In this way, the discriminator can take the spatial arrangement into account and advise the generator to learn an appropriate depth condition. Extensive experimental results suggest that our approach is capable of synthesizing indoor scenes with impressively good quality and 3D consistency, significantly outperforming state-of-the-art alternatives. (Project page can be found here.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    More details of the baselines can be found in the Supplementary Material.

References

  1. Alhaija, H.A., Mustikovela, S.K., Geiger, A., Rother, C.: Geometric image synthesis. In: Asian Conference on Computer Vision (2018)

    Google Scholar 

  2. Ashburner, J., Friston, K.J.: Voxel-based morphometry-the methods. Neuroimage 11, 805–821 (2000)

    Google Scholar 

  3. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. In: International Conference on Learning Representations (2019)

    Google Scholar 

  4. Chan, E., Monteiro, M., Kellnhofer, P., Wu, J., Wetzstein, G.: pi-GAN: periodic implicit generative adversarial networks for 3D-aware image synthesis. In: Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  5. Chan, E.R., et al.: Efficient geometry-aware 3D generative adversarial networks. arXiv preprint arXiv:2112.07945 (2021)

  6. Chen, X., Cohen-Or, D., Chen, B., Mitra, N.J.: Towards a neural graphics pipeline for controllable image generation. In: Computer Graphics Forum (2021)

    Google Scholar 

  7. Cheung, G.K., Kanade, T., Bouguet, J.Y., Holler, M.: A real time system for robust 3D voxel reconstruction of human motions. In: IEEE Conference on Computer Vision and Pattern Recognition (2000)

    Google Scholar 

  8. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  9. Deng, Y., Yang, J., Xiang, J., Tong, X.: Gram: Generative radiance manifolds for 3D-aware image generation. In: Conference on Computer Vision and Pattern Recognition (2022)

    Google Scholar 

  10. DeVries, T., Bautista, M.A., Srivastava, N., Taylor, G.W., Susskind, J.M.: Unconstrained scene generation with locally conditioned radiance fields. In: International Conference on Computer Vision (2021)

    Google Scholar 

  11. Fu, H., Gong, M., Wang, C., Batmanghelich, K., Tao, D.: Deep ordinal regression network for monocular depth estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  12. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems (2014)

    Google Scholar 

  13. Gu, J., Liu, L., Wang, P., Theobalt, C.: Stylenerf: A style-based 3D-aware generator for high-resolution image synthesis. In: International Conference on Learning Representations (2022)

    Google Scholar 

  14. Härkönen, E., Hertzmann, A., Lehtinen, J., Paris, S.: GANSpace: discovering interpretable GAN controls. In: Advances in Neural Information Processing Systems (2020)

    Google Scholar 

  15. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems (2017)

    Google Scholar 

  16. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: International Conference on Learning Representations (2018)

    Google Scholar 

  17. Karras, T., et al.: Alias-free generative adversarial networks. In: Advances in Neural Information Processing Systems (2021)

    Google Scholar 

  18. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  19. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  20. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  21. Michalkiewicz, M., Pontes, J.K., Jack, D., Baktashmotlagh, M., Eriksson, A.: Implicit surface representations as layers in neural networks. In: International Conference on Computer Vision (2019)

    Google Scholar 

  22. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24

    Chapter  Google Scholar 

  23. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54

    Chapter  Google Scholar 

  24. Nguyen-Phuoc, T., Li, C., Theis, L., Richardt, C., Yang, Y.L.: HoloGAN: Unsupervised learning of 3d representations from natural images. In: International Conference on Learning Representations (2019)

    Google Scholar 

  25. Nguyen-Phuoc, T., Richardt, C., Mai, L., Yang, Y.L., Mitra, N.: BlockGAN: Learning 3D object-aware scene representations from unlabelled images. In: Advances in Neural Information Processing Systems (2020)

    Google Scholar 

  26. Niemeyer, M., Geiger, A.: Campari: camera-aware decomposed generative neural radiance fields. arXiv preprint arXiv:2103.17269 (2021)

  27. Niemeyer, M., Geiger, A.: GIRAFFE: representing scenes as compositional generative neural feature fields. In: Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  28. Noguchi, A., Harada, T.: RGBD-GAN: Unsupervised 3D representation learning from natural image datasets via RGBD image synthesis. In: International Conference on Learning Representations (2020)

    Google Scholar 

  29. Ohtake, Y., Belyaev, A., Seidel, H.P.: Ridge-valley lines on meshes via implicit surface fitting. In: ACM SIGGRAPH (2004)

    Google Scholar 

  30. Or-El, R., Luo, X., Shan, M., Shechtman, E., Park, J.J., Kemelmacher-Shlizerman, I.: StyleSDF: high-resolution 3D-consistent image and geometry generation. arXiv preprint arXiv:2112.11427 (2021)

  31. Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: mixing datasets for zero-shot cross-dataset transfer. IEEE Trans. Pattern Anal. Mach, Intell (2020)

    Google Scholar 

  32. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: International Conference on 3-D digital imaging and modeling (2001)

    Google Scholar 

  33. Rusu, R.B., Cousins, S.: 3D is here: point cloud library (PCL). In: IEEE International Conference on Robotics and Automation (2011)

    Google Scholar 

  34. Schnabel, R., Wahl, R., Klein, R.: Efficient RANSAC for point-cloud shape detection. In: Computer Graphics Forum (2007)

    Google Scholar 

  35. Schwarz, K., Liao, Y., Niemeyer, M., Geiger, A.: GRAF: generative radiance fields for 3D-aware image synthesis. In: Advance Neural Information Processing Systems (2020)

    Google Scholar 

  36. Shen, Y., Yang, C., Tang, X., Zhou, B.: InterFaceGAN: interpreting the disentangled face representation learned by GANs. IEEE Trans. Pattern Anal. Mach, Intell (2020)

    Google Scholar 

  37. Shen, Y., Zhou, B.: Closed-form factorization of latent semantics in GANs. In: IEEE Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  38. Sitzmann, V., Martel, J.N., Bergman, A.W., Lindell, D.B., Wetzstein, G.: Implicit neural representation with periodic activation functions. In: Advances in Neural Information Processing Systems (2020)

    Google Scholar 

  39. Wang, X., Gupta, A.: Generative image modeling using style and structure adversarial networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 318–335. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_20

    Chapter  Google Scholar 

  40. Wu, J., Zhang, C., Xue, T., Freeman, W.T., Tenenbaum, J.B.: Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling. In: Advances in Neural Information Processing Systems (2016)

    Google Scholar 

  41. Xu, Y., Peng, S., Yang, C., Shen, Y., Zhou, B.: 3D-aware image synthesis via learning structural and textural representations. In: IEEE Conference on Computer Vision and Pattern Recognition (2022)

    Google Scholar 

  42. Yang, C., Shen, Y., Zhou, B.: Semantic hierarchy emerges in deep generative representations for scene synthesis. Int. J. Comput. Vis. 129(5), 1451–1466 (2021). https://doi.org/10.1007/s11263-020-01429-5

    Article  Google Scholar 

  43. Yin, W., Zhang, J., Wang, O., Niklaus, S., Mai, L., Chen, S., Shen, C.: Learning to recover 3D scene shape from a single image. In: IEEE Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  44. Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., Xiao, J.: LSUN: construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365 (2015)

  45. Zhou, Q.Y., Park, J., Koltun, V.: Open3D: a modern library for 3D data processing. arXiv:1801.09847 (2018)

  46. Zhu, J., et al.: Low-rank subspaces in GANs. In: Advances in Neural Information Processing Systems (2021)

    Google Scholar 

  47. Zhu, J.Y., et al.: Visual object networks: Image generation with disentangled 3D representations. In: Advances in Neural Information Processing Systems (2018)

    Google Scholar 

Download references

Acknowledgement

We thank Yinghao Xu and Sida Peng for their fruitful discussions and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qifeng Chen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1992 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, Z., Shen, Y., Zhu, J., Yeung, DY., Chen, Q. (2022). 3D-Aware Indoor Scene Synthesis with Depth Priors. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13676. Springer, Cham. https://doi.org/10.1007/978-3-031-19787-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19787-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19786-4

  • Online ISBN: 978-3-031-19787-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics