Abstract
Single-image human relighting aims to relight a target human under new lighting conditions by decomposing the input image into albedo, shape and lighting. Although plausible relighting results can be achieved, previous methods suffer from both the entanglement between albedo and lighting and the lack of hard shadows, which significantly decrease the realism. To tackle these two problems, we propose a geometry-aware single-image human relighting framework that leverages single-image geometry reconstruction for joint deployment of traditional graphics rendering and neural rendering techniques. For the de-lighting, we explore the shortcomings of UNet architecture and propose a modified HRNet, achieving better disentanglement between albedo and lighting. For the relighting, we introduce a ray tracing-based per-pixel lighting representation that explicitly models high-frequency shadows and propose a learning-based shading refinement module to restore realistic shadows (including hard cast shadows) from the ray-traced shading maps. Our framework is able to generate photo-realistic high-frequency shadows such as cast shadows under challenging lighting conditions. Extensive experiments demonstrate that our proposed method outperforms previous methods on both synthetic and real images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barron, J.T., Malik, J.: Color constancy, intrinsic images, and shape estimation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 57–70. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_5
Barron, J.T., Malik, J.: Shape, illumination, and reflectance from shading. IEEE Trans. Pattern Anal. Mach. Intell. 37(8), 1670–1687 (2014)
Baslamisli, A.S., Le, H.A., Gevers, T.: CNN based learning using reflection and retinex models for intrinsic image decomposition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6674–6683 (2018)
Bonneel, N., Kovacs, B., Paris, S., Bala, K.: Intrinsic decompositions for image editing. In: Computer Graphics Forum, vol. 36, pp. 593–609. Wiley Online Library (2017)
Chabert, C.F., et al.: Relighting human locomotion with flowed reflectance fields. In: ACM SIGGRAPH 2006 Sketches, p. 76 (2006)
Cho, S.J., Ji, S.W., Hong, J.P., Jung, S.W., Ko, S.J.: Rethinking coarse-to-fine approach in single image deblurring. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4641–4650 (2021)
Christou, C.G., Koenderink, J.J.: Light source dependence in shape from shading. Vision. Res. 37(11), 1441–1449 (1997)
Tajima, D., Kanamori, Y., Endo, Y.: Relighting humans in the wild: monocular full-body human relighting with domain adaptation. Comput. Graph. Forum 40(7), 205–216 (2021)
Debevec, P.: The light stages and their applications to photoreal digital actors. SIGGRAPH Asia 2(4), 1–6 (2012)
Debevec, P., Hawkins, T., Tchou, C., Duiker, H.P., Sarokin, W., Sagar, M.: Acquiring the reflectance field of a human face. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 145–156 (2000)
Debevec, P., Wenger, A., Tchou, C., Gardner, A., Waese, J., Hawkins, T.: A lighting reproduction approach to live-action compositing. ACM Trans. Graphics (TOG) 21(3), 547–556 (2002)
Ding, S., Sheng, B., Hou, X., Xie, Z., Ma, L.: Intrinsic image decomposition using multi-scale measurements and sparsity. In: Computer Graphics Forum, vol. 36, pp. 251–261. Wiley Online Library (2017)
Egger, B., et al.: Occlusion-aware 3d morphable models and an illumination prior for face image analysis. Int. J. Comput. Vision 126(12), 1269–1287 (2018)
Gardner, M.A., et al.: Learning to predict indoor illumination from a single image. ACM Trans. Graph. (TOG) 36(6), 1–14 (2017)
Genova, K., Cole, F., Maschinot, A., Sarna, A., Vlasic, D., Freeman, W.T.: Unsupervised training for 3D morphable model regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8377–8386 (2018)
Guo, J., Zhu, X., Yang, Y., Yang, F., Lei, Z., Li, S.Z.: Towards fast, accurate and stable 3D dense face alignment. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 152–168. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_10
Guo, K., et al.: The relightables: volumetric performance capture of humans with realistic relighting. ACM Trans. Graph. (TOG) 38(6), 1–19 (2019)
Hawkins, T., Cohen, J., Debevec, P.: A photometric approach to digitizing cultural artifacts. In: Proceedings of the 2001 Conference on Virtual Reality, Archeology, and Cultural Heritage, pp. 333–342 (2001)
Hou, A., Zhang, Z., Sarkis, M., Bi, N., Tong, Y., Liu, X.: Towards high fidelity face relighting with realistic shadows. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14719–14728 (2021)
Imber, J., Guillemaut, J.-Y., Hilton, A.: Intrinsic textures for relightable free-viewpoint video. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 392–407. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_26
Jafarian, Y., Park, H.S.: Learning high fidelity depths of dressed humans by watching social media dance videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12753–12762 (2021)
Kanamori, Y., Endo, Y.: Relighting humans: occlusion-aware inverse rendering for full-body human images. ACM Trans. Graph. (TOG) 37(6), 1–11 (2018)
Ke, Z., et al.: Is a green screen really necessary for real-time portrait matting? (2020)
Laffont, P.Y., Bazin, J.C.: Intrinsic decomposition of image sequences from local temporal variations. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 433–441 (2015)
Lagunas, M., et al.: Single-image full-body human relighting. arXiv preprint arXiv:2107.07259 (2021)
Land, E.H., McCann, J.J.: Lightness and retinex theory. Josa 61(1), 1–11 (1971)
Li, C., Zhou, K., Wu, H.T., Lin, S.: Physically-based simulation of cosmetics via intrinsic image decomposition with facial priors. IEEE Trans. Pattern Anal. Mach. Intell. 41(6), 1455–1469 (2018)
Li, G., et al.: Capturing relightable human performances under general uncontrolled illumination. In: Comput. Graph. Forum, vol. 32, pp. 275–284. Wiley Online Library (2013)
Li, Y., Liu, M.-Y., Li, X., Yang, M.-H., Kautz, J.: A closed-form solution to photorealistic image stylization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 468–483. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_28
Lin, J., Yuan, Y., Shao, T., Zhou, K.: Towards high-fidelity 3D face reconstruction from in-the-wild images using graph convolutional networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5891–5900 (2020)
Lopez-Moreno, J., Hadap, S., Reinhard, E., Gutierrez, D.: Light source detection in photographs. In: CEIG, pp. 161–167 (2009)
Meka, A., et al.: Deep reflectance fields: high-quality facial reflectance field inference from color gradient illumination. ACM Trans. Graph. (TOG) 38(4), 1–12 (2019)
Meka, A., et al.: Deep relightable textures: volumetric performance capture with neural rendering. ACM Trans. Graph. (TOG) 39(6), 1–21 (2020)
Nagano, K., et al.: Deep face normalization. ACM Trans. Graph. (TOG) 38(6), 1–16 (2019)
Nestmeyer, T., Lalonde, J.F., Matthews, I., Lehrmann, A.: Learning physics-guided face relighting under directional light. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5124–5133 (2020)
Okatani, T., Deguchi, K.: Shape reconstruction from an endoscope image by shape from shading technique for a point light source at the projection center. Comput. Vis. Image Underst. 66(2), 119–131 (1997)
Pandey, R., et al.: Total relighting: learning to relight portraits for background replacement. ACM Trans. Graph. (TOG) 40(4), 1–21 (2021)
Ramachandran, V.S.: Perception of shape from shading. Nature 331(6152), 163–166 (1988)
Saito, S., Simon, T., Saragih, J., Joo, H.: PIFuHD: multi-level pixel-aligned implicit function for high-resolution 3D human digitization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 84–93 (2020)
Sengupta, S., Kanazawa, A., Castillo, C.D., Jacobs, D.W.: SfSNet: learning shape, reflectance and illuminance of faces ‘in the wild’. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 6296–6305 (2018)
Shahlaei, D., Blanz, V.: Realistic inverse lighting from a single 2D image of a face, taken under unknown and complex lighting. In: 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), vol. 1, pp. 1–8. IEEE (2015)
Sheng, B., Li, P., Jin, Y., Tan, P., Lee, T.Y.: Intrinsic image decomposition with step and drift shading separation. IEEE Trans. Visual Comput. Graphics 26(2), 1332–1346 (2018)
Shu, Z., Hadap, S., Shechtman, E., Sunkavalli, K., Paris, S., Samaras, D.: Portrait lighting transfer using a mass transport approach. ACM Trans. Graph. (TOG) 36(4), 1 (2017)
Shu, Z., Yumer, E., Hadap, S., Sunkavalli, K., Shechtman, E., Samaras, D.: Neural face editing with intrinsic image disentangling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5541–5550 (2017)
Sorkine, O.: Laplacian mesh processing. In: Eurographics (State of the Art Reports), pp. 53–70. Citeseer (2005)
Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5693–5703 (2019)
Sun, T., et al.: Single image portrait relighting. ACM Trans. Graph. 38(4), 1–79 (2019)
Tewari, A., et al.: MoFA: model-based deep convolutional face autoencoder for unsupervised monocular reconstruction. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 1274–1283 (2017)
Wang, Z., Yu, X., Lu, M., Wang, Q., Qian, C., Xu, F.: Single image portrait relighting via explicit multiple reflectance channel modeling. ACM Trans. Graph. (TOG) 39(6), 1–13 (2020)
Wenger, A., Gardner, A., Tchou, C., Unger, J., Hawkins, T., Debevec, P.: Performance relighting and reflectance transformation with time-multiplexed illumination. ACM Trans. Graph. (TOG) 24(3), 756–764 (2005)
Weyrich, T., et al.: Analysis of human faces using a measurement-based skin reflectance model. ACM Trans. Graph. (ToG) 25(3), 1013–1024 (2006)
Whitted, T.: An improved illumination model for shaded display. In: Proceedings of the 6th annual conference on Computer graphics and interactive techniques, p. 14 (1979)
Ye, G., Garces, E., Liu, Y., Dai, Q., Gutierrez, D.: Intrinsic video and applications. ACM Trans. Graph. (ToG) 33(4), 1–11 (2014)
Zhang, L., Zhang, Q., Wu, M., Yu, J., Xu, L.: Neural video portrait relighting in real-time via consistency modeling. arXiv preprint arXiv:2104.00484 (2021)
Zhang, X., et al.: Portrait shadow manipulation. ACM Trans. Graph. (TOG) 39(4), 1–78 (2020)
Zhou, H., Hadap, S., Sunkavalli, K., Jacobs, D.W.: Deep single-image portrait relighting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7194–7202 (2019)
Acknowledgement
This paper is supported by National Key R &D Program of China (2021ZD0113501) and the NSFC project No.62125107, No.62171255 and No.61827805.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ji, C., Yu, T., Guo, K., Liu, J., Liu, Y. (2022). Geometry-Aware Single-Image Full-Body Human Relighting. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13676. Springer, Cham. https://doi.org/10.1007/978-3-031-19787-1_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-19787-1_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19786-4
Online ISBN: 978-3-031-19787-1
eBook Packages: Computer ScienceComputer Science (R0)