Abstract
Considering the complexity of modeling diverse actions of athletes, action quality assessment (AQA) in sports is a challenging task. A common solution is to tackle this problem as a regression task that map the input video to the final score provided by referees. However, it ignores the subtle and critical difference between videos. To address this problem, a new pairwise contrastive learning network (PCLN) is proposed to concern these differences and form an end-to-end AQA model with basic regression network. Specifically, the PCLN encodes video pairs to learn relative scores between videos to improve the performance of basic regression network. Furthermore, a new consistency constraint is defined to guide the training of the proposed AQA model. In the testing phase, only the basic regression network is employed, which makes the proposed method simple but high accuracy. The proposed method is verified on the AQA-7 and MTL-AQA datasets. Several ablation studies are built to verify the effectiveness of each component in the proposed method. The experimental results show that the proposed method achieves the state-of-the-art performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Dong, L.J., Zhang, H.B., Shi, Q., Lei, Q., Du, J.X., Gao, S.: Learning and fusing multiple hidden substages for action quality assessment. Knowl.-Based Syst. 107388 (2021). https://doi.org/10.1016/j.knosys.2021.107388, https://www.sciencedirect.com/science/article/pii/S095070512100650X
Doughty, H., Damen, D., Mayol-Cuevas, W.: Who’s better? Who’s best? Pairwise deep ranking for skill determination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6057–6066 (2018)
Doughty, H., Mayol-Cuevas, W., Damen, D.: The pros and cons: rank-aware temporal attention for skill determination in long videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7862–7871 (2019)
Faller, A.J.: An average correlation coefficient. J. Appl. Meteorol. 20(2), 203–205 (1981)
Farabi, S., et al.: Improving action quality assessment using resnets and weighted aggregation. arXiv preprint arXiv:2102.10555 (2021)
Fard, M.J., Ameri, S., Darin Ellis, R., Chinnam, R.B., Pandya, A.K., Klein, M.D.: Automated robot-assisted surgical skill evaluation: predictive analytics approach. Int. J. Med. Robot. Comput. Assist. Surg. 14(1), e1850 (2018)
Gao, J., et al.: An asymmetric modeling for action assessment. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12375, pp. 222–238. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_14
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016
Jain, H., Harit, G., Sharma, A.: Action quality assessment using Siamese network-based deep metric learning. IEEE Trans. Circuits Syst. Video Technol. 31(6), 2260–2273 (2020)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Lea, C., Flynn, M.D., Vidal, R., Reiter, A., Hager, G.D.: Temporal convolutional networks for action segmentation and detection. In: proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 156–165 (2017)
Lei, Q., Du, J.X., Zhang, H.B., Ye, S., Chen, D.S.: A survey of vision-based human action evaluation methods. Sensors 19(19), 4129 (2019)
Liu, D., et al.: Towards unified surgical skill assessment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9522–9531 (2021)
Malpani, A., Vedula, S.S., Chen, C.C.G., Hager, G.D.: Pairwise comparison-based objective score for automated skill assessment of segments in a surgical task. In: Stoyanov, D., Collins, D.L., Sakuma, I., Abolmaesumi, P., Jannin, P. (eds.) IPCAI 2014. LNCS, vol. 8498, pp. 138–147. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07521-1_15
Nagai, T., Takeda, S., Matsumura, M., Shimizu, S., Yamamoto, S.: Action quality assessment with ignoring scene context. In: 2021 IEEE International Conference on Image Processing (ICIP), pp. 1189–1193. IEEE (2021)
Nekoui, M., Cruz, F.O.T., Cheng, L.: Eagle-eye: extreme-pose action grader using detail bird’s-eye view. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 394–402 (2021)
Nekoui, M., Tito Cruz, F.O., Cheng, L.: Falcons: fast learner-grader for contorted poses in sports. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 3941–3949 (2020). https://doi.org/10.1109/CVPRW50498.2020.00458
Pan, J., Gao, J., Zheng, W.: Adaptive action assessment. IEEE Trans. Pattern Anal. Mach. Intell. (01), 1 (5555). https://doi.org/10.1109/TPAMI.2021.3126534
Pan, J.H., Gao, J., Zheng, W.S.: Action assessment by joint relation graphs. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6331–6340 (2019)
Parmar, P., Morris, B.: Action quality assessment across multiple actions. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1468–1476. IEEE (2019)
Parmar, P., Morris, B.: Hallucineting spatiotemporal representations using a 2D-CNN. Signals 2, 604–618 (2021). https://doi.org/10.3390/signals2030037
Parmar, P., Morris, B.T.: What and how well you performed? A multitask learning approach to action quality assessment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 304–313 (2019)
Parmar, P., Reddy, J., Morris, B.: Piano skills assessment. arXiv preprint arXiv:2101.04884 (2021)
Parmar, P., Tran Morris, B.: Learning to score olympic events. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 20–28 (2017)
Pirsiavash, H., Vondrick, C., Torralba, A.: Assessing the quality of actions. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 556–571. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_36
Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3D residual networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5533–5541 (2017)
Reiley, C.E., Hager, G.D.: Task versus subtask surgical skill evaluation of robotic minimally invasive surgery. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 435–442. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04268-3_54
Roditakis, K., Makris, A., Argyros, A.: Towards improved and interpretable action quality assessment with self-supervised alignment. In: The 14th PErvasive Technologies Related to Assistive Environments Conference. PETRA 2021, pp. 507–513. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3453892.3461624
Sardari, F., Paiement, A., Hannuna, S., Mirmehdi, M.: VI-net-view-invariant quality of human movement assessment. Sensors 20(18), 5258 (2020)
Tang, Y., et al.: Uncertainty-aware score distribution learning for action quality assessment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9839–9848 (2020)
Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)
Varadarajan, B., Reiley, C., Lin, H., Khudanpur, S., Hager, G.: Data-derived models for segmentation with application to surgical assessment and training. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 426–434. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04268-3_53
Wang, J., Du, Z., Li, A., Wang, Y.: Assessing action quality via attentive spatio-temporal convolutional networks. In: Peng, Y., et al. (eds.) PRCV 2020. LNCS, vol. 12306, pp. 3–16. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60639-8_1
Wang, T., Wang, Y., Li, M.: Towards accurate and interpretable surgical skill assessment: a video-based method incorporating recognized surgical gestures and skill levels. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 668–678. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_64
Xiang, X., Tian, Y., Reiter, A., Hager, G.D., Tran, T.D.: S3D: stacking segmental P3D for action quality assessment. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 928–932. IEEE (2018)
Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: Thirty-second AAAI Conference on Artificial Intelligence (2018)
Yu, X., Rao, Y., Zhao, W., Lu, J., Zhou, J.: Group-aware contrastive regression for action quality assessment. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7919–7928 (2021)
Zeng, L.A., et al.: Hybrid dynamic-static context-aware attention network for action assessment in long videos. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 2526–2534 (2020)
Acknowledgements
This work was supported by the Natural Science Foundation of China (No. 61871196, 62001176); Natural Science Foundation of Fujian Province of China (No. 2019J01082, 2020J01085, 2022J01317); Scientific Research Funds of Huaqiao University (No. 21BS122) and the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (No. ZQN-YX601).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, M., Zhang, HB., Lei, Q., Fan, Z., Liu, J., Du, JX. (2022). Pairwise Contrastive Learning Network for Action Quality Assessment. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13664. Springer, Cham. https://doi.org/10.1007/978-3-031-19772-7_27
Download citation
DOI: https://doi.org/10.1007/978-3-031-19772-7_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19771-0
Online ISBN: 978-3-031-19772-7
eBook Packages: Computer ScienceComputer Science (R0)