Abstract
We introduce Semi-supervised Performance Evaluation for Face Recognition (SPE-FR). SPE-FR is a statistical method for evaluating the performance and algorithmic bias of face verification systems when identity labels are unavailable or incomplete. The method is based on parametric Bayesian modeling of the face embedding similarity scores. SPE-FR produces point estimates, performance curves, and confidence bands that reflect uncertainty in the estimation procedure. Focusing on the unsupervised setting wherein no identity labels are available, we validate our method through experiments on a wide range of face embedding models and two publicly available evaluation datasets. Experiments show that SPE-FR can accurately assess performance on data with no identity labels, and confidently reveal demographic biases in system performance.
A. Chouldechova and W. Xia—Work done when at Amazon.
A. Chouldechova and S. Deng—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Some have developed methods for estimating group fairness metrics in the presence of noisy or inferred group membership labels [4, 9, 10, 44]. Understanding how SPE-FR performs with respect to the true unknown groups using inferred group information is an interesting and important question, but beyond the scope of the present work.
- 2.
References
Albiero, V., KS, K., Vangara, K., Zhang, K., King, M.C., Bowyer, K.W.: Analysis of gender inequality in face recognition accuracy. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision Workshops, pp. 81–89 (2020)
Albright, T.D.: Why eyewitnesses fail. Proc. Natl. Acad. Sci. 114(30), 7758–7764 (2017)
An, X., et al: Partial fc: training 10 million identities on a single machine. In: Arxiv 2010.05222 (2020)
Awasthi, P., Beutel, A., Kleindessner, M., Morgenstern, J., Wang, X.: Evaluating fairness of machine learning models under uncertain and incomplete information. In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, pp. 206–214 (2021)
Balakrishnan, G., Xiong, Y., Xia, W., Perona, P.: Towards causal benchmarking of bias in face analysis algorithms. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 547–563. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_32
Beery, S., Van Horn, G., Perona, P.: Recognition in terra incognita. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 472–489. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_28
ter Braak, C.J., Vrugt, J.A.: Differential evolution Markov chain with snooker updater and fewer chains. Stat. Comput. 18(4), 435–446 (2008)
Buolamwini, J., Gebru, T.: Gender shades: intersectional accuracy disparities in commercial gender classification. In: Conference on Fairness, Accountability and Transparency, pp. 77–91. PMLR (2018)
Chen, J., Kallus, N., Mao, X., Svacha, G., Udell, M.: Fairness under unawareness: assessing disparity when protected class is unobserved. In: Proceedings of the Conference on Fairness, Accountability, and Transparency, pp. 339–348 (2019)
Coston, A., et al.: Fair transfer learning with missing protected attributes. In: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, pp. 91–98 (2019)
Deepglint: https://trillionpairs.deepglint.com/overview. https://trillionpairs.deepglint.com/overview
Deng, J., Guo, J., Liu, T., Gong, M., Zafeiriou, S.: Sub-center arcface: Boosting face recognition by large-scale noisy web faces. In: European Conference on Computer Vision, pp. 741–757. Springer (2020)
Deng, J., Guo, J., Liu, T., Gong, M., Zafeiriou, S.: Sub-center ArcFace: boosting face recognition by large-scale noisy web faces. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 741–757. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_43
Deng, J., Guo, J., Niannan, X., Zafeiriou, S.: Arcface: Additive angular margin loss for deep face recognition. In: CVPR (2019)
Deng, J., Guo, J., Ververas, E., Kotsia, I., Zafeiriou, S.: Retinaface: single-shot multi-level face localisation in the wild. In: CVPR (2020)
Deng, J., et al.: The menpo benchmark for multi-pose 2d and 3d facial landmark localisation and tracking. IJCV (2018)
Deng, S., Xiong, Y., Wang, M., Xia, W., Soatto, S.: Harnessing unrecognizable faces for improving face recognition. arXiv preprint arXiv:2106.04112 (2021)
Deng, W., Zheng, L.: Are labels always necessary for classifier accuracy evaluation? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15069–15078 (2021)
Fechner, G.T.: Kollektivmasslehre. Engelmann (1897)
Fernández, C., Steel, M.F.: On bayesian modeling of fat tails and skewness. J. Am. Stat. Assoc. 93(441), 359–371 (1998)
Garg, S., Balakrishnan, S., Lipton, Z.C., Neyshabur, B., Sedghi, H.: Leveraging unlabeled data to predict out-of-distribution performance. arXiv preprint arXiv:2201.04234 (2022)
GoogleAI: Responsible ai practices. https://ai.google/responsibilities/responsible-ai-practices/
Grother, P.J., Ngan, M.L., Hanaoka, K.K., et al.: Face recognition vendor test part 3: demographic effects (2019)
Guillory, D., Shankar, V., Ebrahimi, S., Darrell, T., Schmidt, L.: Predicting with confidence on unseen distributions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1134–1144 (2021)
Guo, J., Deng, J., Lattas, A., Zafeiriou, S.: Sample and computation redistribution for efficient face detection. arXiv preprint arXiv:2105.04714 (2021)
Guo, J., Deng, J., Xue, N., Zafeiriou, S.: Stacked dense u-nets with dual transformers for robust face alignment. In: BMVC (2018)
Hartig, F., Minunno, F., Paul, S.: BayesianTools: general-purpose MCMC and SMC samplers and tools for bayesian statistics (2019). https://CRAN.R-project.org/package=BayesianTools, r package version 0.1.7
Hashimoto, T., Srivastava, M., Namkoong, H., Liang, P.: Fairness without demographics in repeated loss minimization. In: International Conference on Machine Learning,pp. 1929–1938. PMLR (2018)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Coference on Computer Vision and Pattern Recognition,pp. 770–778 (2016)
He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38
IBM: Trustworthy ai.https://www.ibm.com/watson/trustworthy-ai
Ji, D., Smyth, P., Steyvers, M.: Can i trust my fairness metric? assessing fairness with unlabeled data and bayesian inference. arXiv preprint arXiv:2010.09851 (2020)
Kearns, M., Roth, A.: The ethical algorithm: The science of socially aware algorithm design. Oxford University Press (2019)
Keles, U., Lin, C., Adolphs, R.: A cautionary note on predicting social judgments from faces with deep neural networks. Affective Sci. 2(4), 438–454 (2021)
Kortylewski, A., Egger, B., Schneider, A., Gerig, T., Morel-Forster, A., Vetter, T.: Analyzing and reducing the damage of dataset bias to face recognition with synthetic data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,pp. 0 (2019)
Krishnapriya, K., Albiero, V., Vangara, K., King, M.C., Bowyer, K.W.: Issues related to face recognition accuracy varying based on race and skin tone. IEEE Trans. Technol. Soc. 1(1), 8–20 (2020)
Krivosheev, E., Bykau, S., Casati, F., Prabhakar, S.: Detecting and preventing confused labels in crowdsourced data. Proc. VLDB Endowment 13(12), 2522–2535 (2020)
Lahoti, P., et al.: Fairness without demographics through adversarially reweighted learning. arXiv preprint arXiv:2006.13114 (2020)
Maze, B., et al.: Iarpa janus benchmark-c: Face dataset and protocol. In: 2018 International Conference on Biometrics (ICB), pp. 158–165. IEEE (2018)
McKone, E., Dawel, A., Robbins, R.A., Shou, Y., Chen, N., Crookes, K.: Why the other-race effect matters: poor recognition of other-race faces impacts everyday social interactions. British J. Psychol. (2021)
Muthén, B., Shedden, K.: Finite mixture modeling with mixture outcomes using the em algorithm. Biometrics 55(2), 463–469 (1999)
Phillips, P.J., Yates, A.N., Hu, Y., Hahn, C.A., Noyes, E., Jackson, K., Cavazos, J.G., Jeckeln, G., Ranjan, R., Sankaranarayanan, S., et al.: Face recognition accuracy of forensic examiners, superrecognizers, and face recognition algorithms. Proc. Natl. Acad. Sci. 115(24), 6171–6176 (2018)
PricewaterhouseCoopers: Responsible ai toolkit. https://www.pwc.com/gx/en/issues/data-and-analytics/artificial-intelligence/what-is-responsible-ai.html
Prost, F., et al.: Measuring model fairness under noisy covariates: a theoretical perspective. In: Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, pp. 873–883 (2021)
Raji, I.D., Gebru, T., Mitchell, M., Buolamwini, J., Lee, J., Denton, E.: Saving face: Investigating the ethical concerns of facial recognition auditing. In: Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, pp. 145–151 (2020)
Ranjan, R., Castillo, C.D., Chellappa, R.: L2-constrained softmax loss for discriminative face verification. arXiv preprint arXiv:1703.09507 (2017)
Ricanek, K., Tesafaye, T.: Morph: A longitudinal image database of normal adult age-progression. In: 7th International Conference on Automatic Face and Gesture Recognition (FGR06), pp. 341–345. IEEE (2006)
Robinson, J.P., Livitz, G., Henon, Y., Qin, C., Fu, Y., Timoner, S.: Face recognition: too bias, or not too bias? In: Proceedings of the ieee/cvf Conference on Computer Vision and Pattern Recognition Workshops, p. 1 (2020)
Rubio, F., Steel, M.: The family of two-piece distributions. Significance 17, 12–13 (2020). https://doi.org/10.1111/j.1740-9713.2020.01352.x
Rubio, F.J., Ogundimu, E.O., Hutton, J.L.: On modelling asymmetric data using two-piece sinh-arcsinh distributions. Brazilian J. Probability Stat., 485–501 (2016)
Srinivas, N., Ricanek, K., Michalski, D., Bolme, D.S., King, M.: Face recognition algorithm bias: performance differences on images of children and adults. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)
Tanaka, J.W., Kiefer, M., Bukach, C.M.: A holistic account of the own-race effect in face recognition: Evidence from a cross-cultural study. Cognition 93(1), B1–B9 (2004)
Vangara, K., King, M.C., Albiero, V., Bowyer, K., et al.: Characterizing the variability in face recognition accuracy relative to race. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 0 (2019)
Vorvoreanu, M., Walker, K.: Advancing ai trustworthiness: Updates on responsible ai research, February 2022. https://www.microsoft.com/en-us/research/blog/advancing-ai-trustworthiness-updates-on-responsible-ai-research/
Wang, F., et al.: The devil of face recognition is in the noise. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 780–795. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_47
Wang, H., et al.: Cosface: large margin cosine loss for deep face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5265–5274 (2018)
Wang, M., Deng, W., Hu, J., Tao, X., Huang, Y.: Racial faces in the wild: Reducing racial bias by information maximization adaptation network. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 692–702 (2019)
Wang, M., Zhang, Y., Deng, W.: Meta balanced network for fair face recognition. IEEE Trans. Pattern Anal. Mach. Intell. (2021)
Wang, Z., et al.: Towards fairness in visual recognition: effective strategies for bias mitigation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8919–8928 (2020)
Welinder, P., Welling, M., Perona, P.: A lazy man’s approach to benchmarking: Semisupervised classifier evaluation and recalibration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3262–3269 (2013)
Zhou, K., Liu, Z., Qiao, Y., Xiang, T., Loy, C.C.: Domain generalization in vision: a survey. arXiv preprint arXiv:2103.02503 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chouldechova, A., Deng, S., Wang, Y., Xia, W., Perona, P. (2022). Unsupervised and Semi-supervised Bias Benchmarking in Face Recognition. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13673. Springer, Cham. https://doi.org/10.1007/978-3-031-19778-9_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-19778-9_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19777-2
Online ISBN: 978-3-031-19778-9
eBook Packages: Computer ScienceComputer Science (R0)