Abstract
Data cleaning, architecture, and loss function design are important factors contributing to high-performance face recognition. Previously, the research community tries to improve the performance of each single aspect but failed to present a unified solution on the joint search of the optimal designs for all three aspects. In this paper, we for the first time identify that these aspects are tightly coupled to each other. Optimizing the design of each aspect actually greatly limits the performance and biases the algorithmic design. Specifically, we find that the optimal model architecture or loss function is closely coupled with the data cleaning. To eliminate the bias of single-aspect research and provide an overall understanding of the face recognition model design, we first carefully design the search space for each aspect, then a comprehensive search method is introduced to jointly search optimal data cleaning, architecture, and loss function design. In our framework, we make the proposed comprehensive search as flexible as possible, by using an innovative reinforcement learning based approach. Extensive experiments on million-level face recognition benchmarks demonstrate the effectiveness of our newly-designed search space for each aspect and the comprehensive search. We outperform expert algorithms developed for each single research track by large margins. More importantly, we analyze the difference between our searched optimal design and the independent design of the single factors. We point out that strong models tend to optimize with more difficult training datasets and loss functions. Our empirical study can provide guidance in future research towards more robust face recognition systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
An, X., et al.: Partial FC: training 10 million identities on a single machine. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1445–1449 (2021)
Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: VGGFace2: a dataset for recognising faces across pose and age. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 67–74. IEEE (2018)
Chang, W.Y., Tsai, M.Y., Lo, S.C.: ResSaNet: a hybrid backbone of residual block and self-attention module for masked face recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1468–1476 (2021)
Chen, S., Liu, Y., Gao, X., Han, Z.: MobileFaceNets: efficient CNNs for accurate real-time face verification on mobile devices. In: Zhou, J., Wang, Y., Sun, Z., Jia, Z., Feng, J., Shan, S., Ubul, K., Guo, Z. (eds.) CCBR 2018. LNCS, vol. 10996, pp. 428–438. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97909-0_46
Deng, J., Guo, J., Liu, T., Gong, M., Zafeiriou, S.: Sub-center ArcFace: boosting face recognition by large-scale noisy web faces. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 741–757. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_43
Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2019)
Deng, J., Guo, J., Zhou, Y., Yu, J., Kotsia, I., Zafeiriou, S.: RetinaFace: single-stage dense face localisation in the wild. arXiv preprint arXiv:1905.00641 (2019)
Deng, W., Hu, J., Zhang, N., Chen, B., Guo, J.: Fine-grained face verification: FGLFW database, baselines, and human-DCMN partnership. Pattern Recognit. 66, 63–73 (2017)
Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-celeb-1M: a dataset and benchmark for large-scale face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 87–102. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_6
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)
Hu, W., Huang, Y., Zhang, F., Li, R.: Noise-tolerant paradigm for training face recognition CNNs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11887–11896 (2019)
Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database forstudying face recognition in unconstrained environments. In: Workshop on Faces in ‘Real-Life’ Images: Detection, Alignment, and Recognition (2008)
Kemelmacher-Shlizerman, I., Seitz, S.M., Miller, D., Brossard, E.: The MegaFace benchmark: 1 million faces for recognition at scale. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4873–4882 (2016)
Li, C., et al.: AM-LFS: AutoML for loss function search. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8410–8419 (2019)
Liu, B., Song, G., Zhang, M., You, H., Liu, Y.: Switchable k-class hyperplanes for noise-robust representation learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3019–3028 (2021)
Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: SphereFace: deep hypersphere embedding for face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 212–220 (2017)
Liu, Y., et al.: Towards flops-constrained face recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)
Maze, B., et al.: IARPA Janus benchmark-C: face dataset and protocol. In: 2018 International Conference on Biometrics (ICB), pp. 158–165. IEEE (2018)
Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)
Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)
Sun, Y., Wang, X., Tang, X.: Deeply learned face representations are sparse, selective, and robust. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2892–2900 (2015)
Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)
Tan, M., et al.: MnasNet: platform-aware neural architecture search for mobile. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2820–2828 (2019)
Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)
Wang, F., et al.: The devil of face recognition is in the noise. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 780–795. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_47
Wang, F., Cheng, J., Liu, W., Liu, H.: Additive margin softmax for face verification. IEEE Signal Process. Lett. 25(7), 926–930 (2018)
Wang, H., et al.: CosFace: large margin cosine loss for deep face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5265–5274 (2018)
Wang, X., Wang, S., Chi, C., Zhang, S., Mei, T.: Loss function search for face recognition. In: International Conference on Machine Learning, pp. 10029–10038. PMLR (2020)
Wang, X., Wang, S., Wang, J., Shi, H., Mei, T.: Co-mining: deep face recognition with noisy labels. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9358–9367 (2019)
Wen, Y., Zhang, K., Li, Z., Qiao, Yu.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31
Whitelam, C., et al.: IARPA Janus benchmark-B face dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 90–98 (2017)
Wu, X., He, R., Sun, Z., Tan, T.: A light CNN for deep face representation with noisy labels. IEEE Trans. Inf. Forensics Secur. 13(11), 2884–2896 (2018)
Yi, D., Lei, Z., Liao, S., Li, S.Z.: Learning face representation from scratch. arXiv preprint arXiv:1411.7923 (2014)
Zhang, M., Song, G., Zhou, H., Liu, Yu.: Discriminability distillation in group representation learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 1–19. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_1
Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)
Zhang, X., Zhao, R., Qiao, Y., Wang, X., Li, H.: AdaCos: adaptively scaling cosine logits for effectively learning deep face representations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10823–10832 (2019)
Zhang, X., Li, Z., Change Loy, C., Lin, D.: PolyNet: a pursuit of structural diversity in very deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 718–726 (2017)
Zheng, T., Deng, W.: Cross-pose LFW: a database for studying cross-pose face recognition in unconstrained environments. Beijing University of Posts and Telecommunications, Technical report 5, 7 (2018)
Zheng, T., Deng, W., Hu, J.: Cross-age LFW: a database for studying cross-age face recognition in unconstrained environments. arXiv preprint arXiv:1708.08197 (2017)
Zhong, Y., Deng, W., Wang, M., Hu, J., Peng, J., Tao, X., Huang, Y.: Unequal-training for deep face recognition with long-tailed noisy data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7812–7821 (2019)
Zhu, Z., et al.: WebFace260M: a benchmark unveiling the power of million-scale deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10492–10502 (2021)
Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv preprint arXiv:1611.01578 (2016)
Acknowledgement
Hongsheng Li is also a Principal Investigator of Centre for Perceptual and Interactive Intelligence Limited (CPII). This work is supported in part by CPII, in part by the General Research Fund through the Research Grants Council of Hong Kong under Grants (Nos. 14204021, 14207319), in part by CUHK Strategic Fund.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, M., Song, G., Liu, Y., Li, H. (2022). Towards Robust Face Recognition with Comprehensive Search. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13672. Springer, Cham. https://doi.org/10.1007/978-3-031-19775-8_42
Download citation
DOI: https://doi.org/10.1007/978-3-031-19775-8_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19774-1
Online ISBN: 978-3-031-19775-8
eBook Packages: Computer ScienceComputer Science (R0)