Nothing Special   »   [go: up one dir, main page]

Skip to main content

HCL: Improving Graph Representation with Hierarchical Contrastive Learning

  • Conference paper
  • First Online:
The Semantic Web – ISWC 2022 (ISWC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13489))

Included in the following conference series:

Abstract

Contrastive learning has emerged as a powerful tool for graph representation learning. However, most contrastive learning methods learn features of graphs with fixed coarse-grained scale, which might underestimate either local or global information. To capture more hierarchical and richer representation, we propose a novel Hierarchical Contrastive Learning (HCL) framework that explicitly learns graph representation in a hierarchical manner. Specifically, HCL includes two key components: a novel adaptive Learning to Pool (L2Pool) method to construct more reasonable multi-scale graph topology for more comprehensive contrastive objective, a novel multi-channel pseudo-siamese network to further enable more expressive learning of mutual information within each scale. Comprehensive experimental results show HCL achieves competitive performance on 12 datasets involving node classification, node clustering and graph classification. In addition, the visualization of learned representation reveals that HCL successfully captures meaningful characteristics of graphs.

J. Wang and W. Li—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adhikari, B., Zhang, Y., Ramakrishnan, N., Prakash, B.A.: Sub2vec: Feature learning for subgraphs. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 170–182 (2018)

    Google Scholar 

  2. Borgwardt, K.M., Kriegel, H.P.: Shortest-path kernels on graphs. In: IEEE International Conference on Data Mining, pp. 8–16 (2005)

    Google Scholar 

  3. Chen, J., Linstead, E., Swamidass, S.J., D. Wang, P.B.: ChemDB update-full-text search and virtual chemical space. Bioinformatics 23, 2348–2351 (2007)

    Google Scholar 

  4. Chen, M., Wei, Z., Huang, Z., Ding, B., Li, Y.: Simple and deep graph convolutional networks. In: International Conference on Machine Learning, pp. 1725–1735 (2020)

    Google Scholar 

  5. Chen, X., He, K.: Exploring simple Siamese representation learning. In: Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  6. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. Adv. Neural. Inf. Process. Syst. 29, 3844–3852 (2016)

    Google Scholar 

  7. Gao, H., Ji, S.: Graph U-nets. In: International Conference on Machine Learning, pp. 2083–2092 (2019)

    Google Scholar 

  8. Gärtner, T., Flach, P., Wrobel, S.: On graph kernels: hardness results and efficient alternatives. In: Learning Theory and Kernel Machines, pp. 129–143 (2003)

    Google Scholar 

  9. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: International Conference on Machine Learning, pp. 1263–1272 (2017)

    Google Scholar 

  10. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

  11. Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. Adv. Neural. Inf. Process. Syst. 33, 21271–21284 (2020)

    Google Scholar 

  12. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)

    Google Scholar 

  13. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, pp. 1024–1034 (2017)

    Google Scholar 

  14. Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: International Conference on Machine Learning, pp. 4116–4126 (2020)

    Google Scholar 

  15. Hjelm, R.D., et al.: Learning deep representations by mutual information estimation and maximization. In: International Conference on Learning Representations (2019)

    Google Scholar 

  16. Jiao, Y., et al.: Sub-graph contrast for scalable self-supervised graph representation learning. In: IEEE International Conference on Data Mining, pp. 222–231 (2020)

    Google Scholar 

  17. Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint arXiv:1611.07308 (2016)

  18. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations (2017)

    Google Scholar 

  19. Klicpera, J., Weiß enberger, S., Günnemann, S.: Diffusion improves graph learning. In: Advances in Neural Information Processing Systems, pp. 13333–13345 (2019)

    Google Scholar 

  20. Kondor, R., Pan, H.: The multiscale Laplacian graph kernel. Adv. Neural. Inf. Process. Syst. 29, 2990–2998 (2016)

    Google Scholar 

  21. Lee, J., Lee, I., Kang, J.: Self-attention graph pooling. In: International Conference on Machine Learning, pp. 3734–3743 (2019)

    Google Scholar 

  22. Li, P., et al.: Pairwise half-graph discrimination: a simple graph-level self-supervised strategy for pre-training graph neural networks. In: International Joint Conference on Artificial Intelligence, pp. 2694–2700 (2021)

    Google Scholar 

  23. Liu, X., et al.: Self-supervised learning: generative or contrastive. arXiv preprint arXiv:2006.08218 (2020)

  24. Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., Bronstein, M.M.: Geometric deep learning on graphs and manifolds using mixture model CNNs. In: Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  25. Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., Jaiswal, S.: graph2vec: Learning distributed representations of graphs. arXiv preprint arXiv:1707.05005 (2017)

  26. van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  27. Pan, S., Hu, R., Long, G., Jiang, J., Yao, L., Zhang, C.: Adversarially regularized graph autoencoder for graph embedding. In: International Joint Conference on Artificial Intelligence, pp. 2609–2615 (2018)

    Google Scholar 

  28. Park, J., Lee, M., Chang, H.J., Lee, K., Choi, J.Y.: Symmetric graph convolutional autoencoder for unsupervised graph representation learning. In: International Conference on Computer Vision, pp. 6519–6528 (2019)

    Google Scholar 

  29. Peng, Z., et al.: Graph representation learning via graphical mutual information maximization. In: The Web Conference (2020)

    Google Scholar 

  30. Qiu, J., et al.: GCC: graph contrastive coding for graph neural network pre-training. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1150–1160 (2020)

    Google Scholar 

  31. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classification in network data. AI Mag. 29(3), 93–93 (2008)

    Google Scholar 

  32. Shchur, O., Mumme, M., Bojchevski, A., Günnemann, S.: Pitfalls of graph neural network evaluation. In: NeurIPS Relational Representation Learning Workshop (2018)

    Google Scholar 

  33. Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011)

    Google Scholar 

  34. Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.: Efficient graphlet kernels for large graph comparison. In: Artificial Intelligence and Statistics, pp. 488–495 (2009)

    Google Scholar 

  35. Sun, F., Hoffmann, J., Verma, V., Tang, J.: InfoGraph: unsupervised and semi-supervised graph-level representation learning via mutual information maximization. In: International Conference on Learning Representations (2020)

    Google Scholar 

  36. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: International Conference on Learning Representations (2018)

    Google Scholar 

  37. Veličković, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., Hjelm, R.D.: Deep graph infomax. In: International Conference on Learning Representations (2019)

    Google Scholar 

  38. Wang, C., Pan, S., Long, G., Zhu, X., Jiang, J.: MGAE: marginalized graph autoencoder for graph clustering. In: Conference on Information and Knowledge Management, pp. 889–898 (2017)

    Google Scholar 

  39. Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.: Simplifying graph convolutional networks. In: International Conference on Machine Learning (2019)

    Google Scholar 

  40. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? In: International Conference on Learning Representations (2019)

    Google Scholar 

  41. Yanardag, P., Vishwana, S.: Deep graph kernels. In: International Conference on Knowledge Discovery and Data Mining, pp. 1365–1374 (2015)

    Google Scholar 

  42. Yang, Z., Cohen, W., Salakhudinov, R.: Revisiting semi-supervised learning with graph embeddings. In: International Conference on Machine Learning, pp. 40–48 (2016)

    Google Scholar 

  43. Ying, R., You, J., Morris, C., Ren, X., Hamilton, W.L., Leskovec, J.: Hierarchical graph representation learning with differentiable pooling. In: Advances in Neural Information Processing Systems, pp. 4805–4815 (2018)

    Google Scholar 

  44. You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., Shen, Y.: Graph contrastive learning with augmentations. In: Advances in Neural Information Processing Systems (2020)

    Google Scholar 

  45. Yuan, H., Ji, S.: StructPool: structured graph pooling via conditional random fields. In: International Conference on Learning Representations (2020)

    Google Scholar 

  46. Zhu, X., Ghahramani, Z., Lafferty, J.D.: Semi-supervised learning using Gaussian fields and harmonic functions. In: International Conference on Machine Learning, pp. 912–919 (2003)

    Google Scholar 

  47. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Deep graph contrastive representation learning. In: ICML Workshop on Graph Representation Learning and Beyond (2020)

    Google Scholar 

  48. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: The Web Conference (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guotong Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J. et al. (2022). HCL: Improving Graph Representation with Hierarchical Contrastive Learning. In: Sattler, U., et al. The Semantic Web – ISWC 2022. ISWC 2022. Lecture Notes in Computer Science, vol 13489. Springer, Cham. https://doi.org/10.1007/978-3-031-19433-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19433-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19432-0

  • Online ISBN: 978-3-031-19433-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics