Nothing Special   »   [go: up one dir, main page]

Skip to main content

DEANet: A Real-Time Image Semantic Segmentation Method Based on Dual Efficient Attention Mechanism

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13472))

Abstract

Image semantic segmentation is the basis of performing various tasks in computer vision. It has been widely used in medical imaging, robotics and many other fields. However, the existing image semantic segmentation technology cannot improve the segmentation speed while ensuring the segmentation accuracy, and cannot meet the requirements of real-time applications. Therefore, this paper proposes a real-time image semantic segmentation method based on dual efficient attention mechanism (DEANet). Pyramid sampling is introduced into the channel dimension to extract multi-scale information, and higher resolution aggregation features are adopted as the input of the spatial dimension. It can achieve high efficiency and accuracy of image semantic segmentation. The proposed DEANet was tested on two classic datasets. On the Cityscapes dataset, when the input size is 512 × 1024, the segmentation accuracy reaches 74.90% mIoU, and the segmentation speed reaches 99.91FPS. On the CamVid dataset, when the input size is 360 × 480, the segmentation accuracy reaches 70.07% mIoU and the segmentation speed reaches 142.72 FPS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2015)

    Google Scholar 

  2. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  3. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI: IEEE, pp. 6230–6239 (2017)

    Google Scholar 

  4. Paszke, A., Chaurasia, A., Kim, S., Culurciello, E.: ENet: a deep neural network architecture for real-time semantic segmentation. arXiv:1606.02147 [cs] (2016)

  5. Romera, E., Álvarez, J.M., Bergasa, L.M., Arroyo, R.: ERFNet: efficient residual factorized convnet for real-time semantic segmentation. IEEE Trans. Intell. Transp. Syst. 19(1), 263–272 (2018)

    Article  Google Scholar 

  6. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012)

    Google Scholar 

  8. K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  9. Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N.: BiSeNet: bilateral segmentation network for real-time semantic segmentation, pp. 325–341 (2018)

    Google Scholar 

  10. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks, pp. 7794–7803 (2018)

    Google Scholar 

  11. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks, pp. 7132–7141 (2018)

    Google Scholar 

  12. Lih, C., Xiong, P.F., An, J., et al.: Pyramid attention network for semantic segmentation. arXiv:1805.10180 (2018)

  13. Zhu, Z., Xu, M., Bai, S., Huang, T., Bai, X.: Asymmetric non-local neural networks for semantic segmentation. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 593–602 (2019)

    Google Scholar 

  14. Fu, J., et al.: Dual attention network for scene segmentation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3141–3149 (2019)

    Google Scholar 

  15. Liu, H., Liu, F., Fan, X., Huang, D.: Polarized self-attention: towards high-quality pixel-wise regression. Arxiv Pre-Print arXiv:2107.00782 (2021)

  16. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  17. Brostow, G.J., Shotton, J., Fauqueur, J., Cipolla, R.: Segmentation and recognition using structure from motion point clouds. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 44–57. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88682-2_5

    Chapter  Google Scholar 

  18. Li, G., Yun, I., Kim, J., et al.: Dabnet: depth-wise asymmetric bottleneck for real-time semantic segmentation. arXiv preprint arXiv:1907.11357 (2019)

  19. Lo, S.Y., Hang, H.M., Chan, S.W., et al.: Efficient dense modules of asymmetric convolution for real-time semantic segmentation. In: Proceedings of the ACM Multimedia Asia, pp. 1–6 (2019)

    Google Scholar 

  20. Fan, M., Lai, S., Huang, J., et al.: Rethinking bisenet for real-time semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9716–9725 (2021)

    Google Scholar 

  21. Xiong, J., Po, L.M., Yu, W.Y., et al.: CSRNet: cascaded selective resolution network for real- time semantic segmentation. arXiv preprint arXiv:2106.04400 (2021)

  22. Yu, C., Gao, C., Wang, J., et al.: Bisenet v2: bilateral network with guided aggregation for real- time semantic segmentation. Int. J. Comput. Vision 129(11), 3051–3068 (2021)

    Article  Google Scholar 

  23. Sixiang, T.: Feature Reuse and Fusion for Real-time Semantic segmentation. arXiv preprint arXiv:2105.12964 (2021)

  24. Peng, J., Liu, Y., Tang, S., et al.: PP-LiteSeg: a superior real-time semantic segmentation model. arXiv preprint arXiv:2204.02681 (2022)

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grant No. U1908214), Special Project of Central Government Guiding Local Science and Technology Development (Grant No. 2021JH6/10500140), Program for the Liaoning Distinguished Professor, Program for Innovative Research Team in University of Liaoning Province (Grant No. LT2020015), the Support Plan for Key Field Innovation Team of Dalian (2021RT06), the Science and Technology Innovation Fund of Dalian (Grant No. 2020JJ25CY001), the Support Plan for Leading Innovation Team of Dalian University (XLJ202010), Dalian University Scientific Research Platform Project (No. 202101YB03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui Liu or Dongsheng Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X., Liu, R., Dong, J., Yi, P., Zhou, D. (2022). DEANet: A Real-Time Image Semantic Segmentation Method Based on Dual Efficient Attention Mechanism. In: Wang, L., Segal, M., Chen, J., Qiu, T. (eds) Wireless Algorithms, Systems, and Applications. WASA 2022. Lecture Notes in Computer Science, vol 13472. Springer, Cham. https://doi.org/10.1007/978-3-031-19214-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19214-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19213-5

  • Online ISBN: 978-3-031-19214-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics