Abstract
In opportunistic network with node clusters, it is usually necessary to set up ferry nodes to connect each cluster to achieve the overall connectivity of the network, and the movement pattern of ferry nodes has an important impact on the overall performance of the network. The existing opportunistic network routing algorithms based on ferry nodes suffer from insufficient resource utilization and inefficient collaboration among multiple nodes in resource optimization and collaborative work, which often leads to low overall network delivery probability and high network load. Therefore, this paper proposes a cooperative routing algorithm for multiple ferry nodes based on active motion mode (ORABAC), in which ferry nodes actively realize the planning of motion paths according to their states and network message forwarding requirements, while multiple ferry nodes in the network realize cooperative work. Simulation results show that the proposed routing algorithm achieves higher delivery probability and less delivery latency while reducing the energy consumption of ferry nodes and restraining network overhead.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Soelistijanto, B., Howarth, M.: Transfer reliability and congestion control strategies in opportunistic networks. IEEE Commun. Surv. Tutorials 16(1), 538–555 (2014)
Zhao, G.-S., Chen, M.: Forward tendency based fixed path ferry routing algorithm. J. Beijing Univ. Posts Telecommun. 35(2), 41–45 (2012)
Liu, C.-R., Zhang, S.-K., Jia, J.-C., Lin, C.-K.: Routing mechanism based on the cooperation of the ferry nodes and cluster nodes in opportunistic networks. Acta Electron. Sin. 44(11), 2607–2617 (2016)
Peng, C., Li, W.H., Wang, Y.Z.: All coverage and low-delay routing algorithm based on message ferry in opportunistic networks. Appl. Res. Comput. 34(03), 819–823 (2017)
Xue, L., Liu, J., Peng, J.: An adaptive message ferry routing algorithm for Delay Tolerant Networks. In: 2012 IEEE 14th International Conference on Communication Technology CONFERENCE 2012, pp. 699–703. Institute of Electrical and Electronics Engineers Inc., Chengdu (2012)
Tang, L.J., Chai, Y., Li, Y.: Route design for multiple message ferries in partitioned opportunistic networks. Appl. Res. Comput. 30(06), 1775–1778 (2013)
Li, Y., Weng, B.B., Liu, Q.L.: Multiple ferry route design based on city-village model in opportunistic networks. Appl. Res. Comput. 029(1), 263–265 (2012)
Xiong, X.R., Zhang, N., Ji, R.J.: Routing strategy of regional center node in post-disaster delay tolerant network. Comput. Eng. Des. 40(06), 1529–1534 (2019)
Niitsu, Y., Sakuma, T., Date, H.: Power utilization efficiency improvement method for DTN using a message ferry. In: 8th International Conference on Ubiquitous and Future Networks Conference 2016, pp. 954–956. IEEE Computer Society, Vienna (2016)
Li, J.B., Deng, K., Ren, Z.: An efficient and low-delay routing algorithm for multiple ferries in opportunistic networks. J. Xi’an Jiaotong Univ. 49(04), 91–97 (2015)
Roy, S., Bhusal, S., Tomasi, D., et al.: Optimizing message ferry scheduling in a DTN. In: 16th ACM International Symposium on Mobility Management and Wireless Access, pp. 113–117. Association for Computing Machinery Inc., Montreal (2018)
Alaoui, E.A.A., Amine, K., Moudden, M.E., Agoujil, S.: Towards an efficient circulation of message ferry in the DRHT. In: Proceedings of the 3rd International Conference on Smart City Applications Article, vol. 30. Association for Computing Machinery, Tetouan (2018)
Chen, W., Chen, Z., Li, W., Zeng, F.: An enhanced community-based routing with ferry in opportunistic networks. In: 2016 International Conference on Identification. Information and Knowledge in the Internet of Things, January 2018, pp. 340–344. Institute of Electrical and Electronics Engineers Inc., Beijing (2016)
Vallikannu, R., George, A., Srivatsa, S.K.: Routing and charging scheme with ferry nodes in Mobile Adhoc networks. In: 2017 International Conference on Intelligent Computing and Control, I2C2 2017, 23 June 2017–24 June 2017, 1–4 January 2018. Institute of Electrical and Electronics Engineers Inc., Coimbatore (2017)
Alnuaimi, M., Shuaib, K., Alnuaimi, K., Abdel-Hafez, M.: Ferry-based data gathering in wireless sensor networks with path selection. Procedia Comput. Sci. 52(1) (2015)
Ikenoue, K., Ueda, K.: Routing method based on data transfer path in DTN environments. In: Barolli, L., Hellinckx, P., Enokido, T. (eds.) BWCCA 2019. LNNS, vol. 97, pp. 544–552. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33506-9_49
Acknowledgment
This work was partially supported by the National Natural Science Foundation of China under Grant 62061036,61841109 and 62077032, Natural Science Foundation of Inner Mongolia under Grand 2019MS06031, Inner Mongolia Autonomous Region Graduate Research Innovation Project S20210127Z.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Xu, G., Tang, Q., Wang, Z., Huang, B. (2022). Opportunistic Network Routing Algorithm Based on Ferry Node Cluster Active Motion and Collaborative Computing. In: Wang, L., Segal, M., Chen, J., Qiu, T. (eds) Wireless Algorithms, Systems, and Applications. WASA 2022. Lecture Notes in Computer Science, vol 13471. Springer, Cham. https://doi.org/10.1007/978-3-031-19208-1_51
Download citation
DOI: https://doi.org/10.1007/978-3-031-19208-1_51
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19207-4
Online ISBN: 978-3-031-19208-1
eBook Packages: Computer ScienceComputer Science (R0)