Abstract
We consider the reachability problem for higher-order functional programs and study the relationship between reachability games (i.e., the reachability problem for programs with angelic and demonic nondeterminism) and may-reachability (i.e., the reachability problem for programs with only angelic nondeterminism). We show that reachability games for order-\(n\) programs can be reduced to may-reachability problems for order-(\(n+1\)) programs, and vice versa. We formalize the reductions by using higher-order fixpoint logic and prove their correctness. We also discuss applications to higher-order program verification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In the context of program verification, we are often interested in (un)reachability to bad states. Thus, in that context, \(\textbf{succ}\) in this section is actually interpreted as an error state, and the terms “angelic” and “demonic” below are swapped.
- 2.
Although the understanding of the refinement type systems ReTHFL is not required below, interested readers may wish to consult [11].
- 3.
We have implemented a prototype translator, but have not yet integrated it into ReTHFL. For readability, here we show the formula obtained by some manual simplification of the automatically generated formula.
References
Asada, K., Katsura, H., Kobayashi, N.: On higher-order reachability games vs may reachability. CoRR abs/2203.08416 (2022). https://doi.org/10.48550/arXiv.2203.08416
Asada, K., Kobayashi, N.: On word and frontier languages of unsafe higher-order grammars. In: Chatzigiannakis, I., Mitzenmacher, M., Rabani, Y., Sangiorgi, D. (eds.) 43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016, 11–15 July 2016, Rome, Italy. LIPIcs, vol. 55, pp. 111:1–111:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016). https://doi.org/10.4230/LIPIcs.ICALP.2016.111
Asada, K., Kobayashi, N.: Size-preserving translations from order-(n+1) word grammars to order-n tree grammars. In: Ariola, Z.M. (ed.) 5th International Conference on Formal Structures for Computation and Deduction, FSCD 2020, June 29–July 6 2020, Paris, France (Virtual Conference). LIPIcs, vol. 167, pp. 22:1–22:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.FSCD.2020.22
Burn, T.C., Ong, C.L., Ramsay, S.J.: Higher-order constrained Horn clauses for verification. Proc. ACM Program. Lang. 2(POPL), 11:1–11:28 (2018). https://doi.org/10.1145/3158099
Champion, A., Chiba, T., Kobayashi, N., Sato, R.: ICE-based refinement type discovery for higher-order functional programs. J. Autom. Reason. 64(7), 1393–1418 (2020). https://doi.org/10.1007/s10817-020-09571-y
Champion, A., Kobayashi, N., Sato, R.: HoIce: An ICE-based non-linear horn clause solver. In: Ryu, S. (ed.) Programming Languages and Systems - 16th Asian Symposium, APLAS 2018, Wellington, New Zealand, December 2–6, 2018, Proceedings. Lecture Notes in Computer Science, vol. 11275, pp. 146–156. Springer (2018). https://doi.org/10.1007/978-3-030-02768-1_8
Damm, W.: The IO- and OI-hierarchies. Theor. Comput. Sci. 20, 95–207 (1982)
Grädel, E., Thomas, W., Wilke, T.: Automata, Logics, and Infinite Games: A Guide to Current Research, LNCS, vol. 2500. Springer, Cham (2002). https://doi.org/10.1007/3-540-36387-4
Hojjat, H., Rümmer, P.: The ELDARICA horn solver. In: 2018 Formal Methods in Computer Aided Design (FMCAD), pp. 1–7 (2018)
Iwayama, N., Kobayashi, N., Suzuki, R., Tsukada, T.: Predicate abstraction and CEGAR for \(\nu \)HFL\(_Z\) validity checking. In: Pichardie, D., Sighireanu, M. (eds.) SAS 2020. LNCS, vol. 12389, pp. 134–155. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65474-0_7
Katsura, H., Iwayama, N., Kobayashi, N., Tsukada, T.: A new refinement type system for automated \(\nu \)HFL\(_Z\) validity checking. In: Oliveira, B.C.S. (ed.) APLAS 2020. LNCS, vol. 12470, pp. 86–104. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64437-6_5
Kobayashi, N., Dal Lago, U., Grellois, C.: On the termination problem for probabilistic higher-order recursive programs. In: Proceedings of LICS 2019. IEEE (2019)
Kobayashi, N., Nishikawa, T., Igarashi, A., Unno, H.: Temporal verification of programs via first-order fixpoint logic. In: Chang, B.-Y.E. (ed.) SAS 2019. LNCS, vol. 11822, pp. 413–436. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32304-2_20
Kobayashi, N., Ong, C.-H.L.: Complexity of model checking recursion schemes for fragments of the modal mu-calculus. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 223–234. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02930-1_19
Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-order model checking. In: PLDI 2011, pp. 222–233. ACM Press (2011)
Kobayashi, N., Tsukada, T., Watanabe, K.: Higher-order program verification via HFL model checking. In: Ahmed, A. (ed.) ESOP 2018. LNCS, vol. 10801, pp. 711–738. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89884-1_25
Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive programs. Formal Methods Syst. Des. 48(3), 175–205 (2016). https://doi.org/10.1007/s10703-016-0249-4
Ong, C.H.L.: On model-checking trees generated by higher-order recursion schemes. In: LICS 2006, pp. 81–90. IEEE Computer Society Press (2006)
Parys, P.: Higher-order model checking step by step. In: Bansal, N., Merelli, E., Worrell, J. (eds.) 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12–16, 2021, Glasgow, Scotland (Virtual Conference). LIPIcs, vol. 198, pp. 140:1–140:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.ICALP.2021.140
Rondon, P.M., Kawaguchi, M., Jhala, R.: Liquid types. In: PLDI 2008, pp. 159–169 (2008)
Satake, Y., Unno, H., Yanagi, H.: Probabilistic inference for predicate constraint satisfaction. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, pp. 1644–1651. AAAI Press (2020)
Tsukada, T.: On computability of logical approaches to branching-time property verification of programs. In: Hermanns, H., Zhang, L., Kobayashi, N., Miller, D. (eds.) LICS 2020: 35th Annual ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken, Germany, 8–11 July 2020, pp. 886–899. ACM (2020). https://doi.org/10.1145/3373718.3394766
Viswanathan, M., Viswanathan, R.: A higher order modal fixed point logic. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 512–528. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28644-8_33
Watanabe, K., Tsukada, T., Oshikawa, H., Kobayashi, N.: Reduction from branching-time property verification of higher-order programs to HFL validity checking. In: Hermenegildo, M.V., Igarashi, A. (eds.) Proceedings of the 2019 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation, PEPM@POPL 2019, Cascais, Portugal, 14–15 January 2019, pp. 22–34. ACM (2019). https://doi.org/10.1145/3294032.3294077
Acknowledgments
We would like to thank anonymous referees for useful comments. This work was supported by JSPS KAKENHI Grant Number JP20H05703 and JST SPRING Grant Number JPMJSP2108.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Asada, K., Katsura, H., Kobayashi, N. (2022). On Higher-Order Reachability Games Vs May Reachability. In: Lin, A.W., Zetzsche, G., Potapov, I. (eds) Reachability Problems. RP 2022. Lecture Notes in Computer Science, vol 13608. Springer, Cham. https://doi.org/10.1007/978-3-031-19135-0_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-19135-0_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19134-3
Online ISBN: 978-3-031-19135-0
eBook Packages: Computer ScienceComputer Science (R0)