Nothing Special   »   [go: up one dir, main page]

Skip to main content

Dirt Detection and Segmentation Network for Autonomous Washing Robots

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13536))

Included in the following conference series:

  • 1819 Accesses

Abstract

In the field of industrial, robots are becoming a modern method to perform automatic washing on large industrial components while detecting dirt. Therefore, the detection and segmentation of dirt have a great impact on optimizing the effects and improving quality of washing by modern washing robots. We propose DDSN (Dirt Detection and Segmentation Network) in this paper which improves the SVDD (Support Vector Data Description), using neural networks to obtain the optimal kernel function of SVDD, so that training images with no dirt can be mapped to the smallest hypersphere in the feature space. In dirt detection and segmentation, the distance between the test images and the centers of the corresponding hypersphere is defined as the feature value, and the dirt scores of the pixels can be obtained. Before training of dirt dataset, we use a larger anomaly detection dataset named MVTecAD which is also the one-class classification to pretrain the feature extraction network, which makes up for the lack of samples in the dirt dataset and speeds up the convergence of the model. Afterwards, we transfer the feature extraction network to training the dirt dataset of large industrial components. The results show that the methods proposed in this paper performs well in detection and segmentation of both MVTecAD dataset and dirt dataset of large industrial components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Richard, B., et al.: Autonomous dirt detection for cleaning in office environments. In: International Conference on Robotics and Automation, pp. 1260–1267. IEEE (2013)

    Google Scholar 

  2. Jürgen, H., et al.: A probabilistic approach to high-confidence cleaning guarantees for low-cost cleaning robots. In: International Conference on Robotics and Automation (ICRA), pp. 5600–5605. IEEE (2014)

    Google Scholar 

  3. Redmon, J., et al.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016)

    Google Scholar 

  4. Shaoqing, R., et al.: Faster r-cnn: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  5. Richard, B., et al.: DirtNet: visual dirt detection for autonomous cleaning robots. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 1977–1983 (2020)

    Google Scholar 

  6. Daniel, C., et al.: A deep learning-based dirt detection computer vision system for floor-cleaning robots with improved data collection. Technologies 9(4), 94 (2021)

    Article  Google Scholar 

  7. Glenn, J., et al.: ultralytics/yolov5: v5. 0-YOLOv5-P6 1280 models. AWS, Supervise. ly and YouTube integrations 10 (2021)

    Google Scholar 

  8. Deng, J., Berg, A.C., Li, K., Fei-Fei, L.: What does classifying more than 10,000 image categories tell Us? In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 71–84. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15555-0_6

    Chapter  Google Scholar 

  9. Stefan, H., et al.: Dominant orientation templates for real-time detection of texture-less objects. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2257–2264. IEEE (2010)

    Google Scholar 

  10. Alvaro, C., et al.: The MOPED framework: object recognition and pose estimation for manipulation. Int. J. Rob. Res. 30(10), 1284–1306 (2011)

    Article  Google Scholar 

  11. Jan, F., et al.: A framework for object training and 6 DoF pose estimation. In: 7th German Conference on Robotics, pp. 1–6. VDE (2012)

    Google Scholar 

  12. Vert, R., et al.: Consistency and convergence rates of one-class SVMs and related algorithms. J. Mach. Learn. Res. 7(5), 817–854 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Platt, J.C. Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines (1998)

    Google Scholar 

  14. Tax, D.M.J., Duin, R.P.W.: Support vector data description. Mach. Learn. 54(1), 45–66 (2004)

    Article  Google Scholar 

  15. Zhou, Z., et al.: Machine learning, 1st edn. Tsinghua University Press, Beijing (2016)

    Google Scholar 

  16. Hofmann, T., et al.: Kernel methods in machine learning. Ann. Stat. 36(3), 1171–1220 (2008)

    Article  MathSciNet  Google Scholar 

  17. Ruff, L., et al.: Deep one-class classification. In: International Conference on Machine Learning pp. 4393–4402. PMLR (2018)

    Google Scholar 

  18. Ruff, L., et al.: Deep semi-supervised anomaly detection. arXiv preprint arXiv:1906.02694 (2019)

  19. Jihun, Y., et al.: Patch svdd: patch-level svdd for anomaly detection and segmentation. In: Proceedings of the Asian Conference on Computer Vision (2020)

    Google Scholar 

  20. Paul, B., et al.: MVTec AD-a comprehensive real-world dataset for unsupervised anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9592–9600 (2019)

    Google Scholar 

  21. Bergmann, P., Batzner, K., Fauser, M., Sattlegger, D., Steger, C.: The MVTec anomaly detection dataset: a comprehensive real-world dataset for unsupervised anomaly detection. Int. J. Comput. Vision 129(4), 1038–1059 (2021). https://doi.org/10.1007/s11263-020-01400-4

    Article  Google Scholar 

  22. Philipp, L., et al.: Explainable deep one-class classification. arXiv preprint arXiv:2007.01760 (2020)

  23. Grünauer, A., Halmetschlager-Funek, G., Prankl, J., Vincze, M.: The power of GMMs: unsupervised dirt spot detection for industrial floor cleaning robots. In: Gao, Y., Fallah, S., Jin, Y., Lekakou, C. (eds.) TAROS 2017. LNCS (LNAI), vol. 10454, pp. 436–449. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64107-2_34

    Chapter  Google Scholar 

  24. Hansi, J., et al.: Fast incremental SVDD learning algorithm with the Gaussian kernel. In: AAAI Conference on Artificial Intelligence, vol. 33(01), pp. 3991–3998 (2019)

    Google Scholar 

  25. Carl, D., et al.: Unsupervised visual representation learning by context prediction. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1422–1430 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guan, S., Peng, G. (2022). Dirt Detection and Segmentation Network for Autonomous Washing Robots. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13536. Springer, Cham. https://doi.org/10.1007/978-3-031-18913-5_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18913-5_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18912-8

  • Online ISBN: 978-3-031-18913-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics