Nothing Special   »   [go: up one dir, main page]

Skip to main content

Adversarial Bidirectional Feature Generation for Generalized Zero-Shot Learning Under Unreliable Semantics

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13535))

Included in the following conference series:

  • 1572 Accesses

Abstract

Although extensive methods have been proposed for Generalized Zero-shot Learning (GZSL), studies are still scarce for GZSL with unreliable data, which is a common issue in real circumstances. In this paper, we introduce a new problem of Generalized Zero-shot Learning with Unreliable Semantics (GZSL-US), based on which we study the GZSL under the partially ambiguous or even missing semantics. To address such a problem, we present a unified generative framework named Adversarial Bidirectional Feature Generation (ABFG), which introduces two extra operations, namely Bidirectional Matching (BM) and Adversary Injection (AI), to the basic generation process. The BM is to guarantee the consistency of the visual and semantic spaces by matching them with a learned metric, which alleviates the domain bias problem in GZSL. Meanwhile, AI is not only introduced for further exploiting the sampling space, but also for endowing the model with a strong resistance ability to semantic interference. The experimental results of Generative Adversarial Network (GAN)-based and Variational AutoEncoder (VAE)-based ABFG instances on four popular benchmarks not only prove the superior robustness of ABFG to the unreliable semantics but also demonstrate the encouraging GZSL performances in comparison with the state-of-the-arts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akata, Z., Reed, S., Walter, D., Lee, H., Schiele, B.: Evaluation of output embeddings for fine-grained image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2927–2936 (2015)

    Google Scholar 

  2. Annadani, Y., Biswas, S.: Preserving semantic relations for zero-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7603–7612 (2018)

    Google Scholar 

  3. Bhagoji, A.N., He, W., Li, B., Song, D.: Practical black-box attacks on deep neural networks using efficient query mechanisms. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 158–174. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01258-8_10

    Chapter  Google Scholar 

  4. Biggio, B., Roli, F.: Wild patterns: ten years after the rise of adversarial machine learning. Pattern Recogn. 84, 317–331 (2018)

    Article  Google Scholar 

  5. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE (2017)

    Google Scholar 

  6. Changpinyo, S., Chao, W.L., Gong, B., Sha, F.: Synthesized classifiers for zero-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5327–5336 (2016)

    Google Scholar 

  7. Dong, Y., Pang, T., Su, H., Zhu, J.: Evading defenses to transferable adversarial examples by translation-invariant attacks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4312–4321 (2019)

    Google Scholar 

  8. Frome, A., et al.: Devise: a deep visual-semantic embedding model. In: Advances in Neural Information Processing Systems, pp. 2121–2129 (2013)

    Google Scholar 

  9. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

  10. Guo, C., Gardner, J.R., You, Y., Wilson, A.G., Weinberger, K.Q.: Simple black-box adversarial attacks. arXiv preprint arXiv:1905.07121 (2019)

  11. Guo, Y., et al.: Dual-view ranking with hardness assessment for zero-shot learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8360–8367 (2019)

    Google Scholar 

  12. Huang, H., Wang, C., Yu, P.S., Wang, C.D.: Generative dual adversarial network for generalized zero-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 801–810 (2019)

    Google Scholar 

  13. Inkawhich, N., Wen, W., Li, H.H., Chen, Y.: Feature space perturbations yield more transferable adversarial examples. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7066–7074 (2019)

    Google Scholar 

  14. Kodirov, E., Xiang, T., Gong, S.: Semantic autoencoder for zero-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3174–3183 (2017)

    Google Scholar 

  15. Kumar Verma, V., Arora, G., Mishra, A., Rai, P.: Generalized zero-shot learning via synthesized examples. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4281–4289 (2018)

    Google Scholar 

  16. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world. arXiv preprint arXiv:1607.02533 (2016)

  17. Li, J., Lan, X., Liu, Y., Wang, L., Zheng, N.: Compressing unknown images with product quantizer for efficient zero-shot classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5463–5472 (2019)

    Google Scholar 

  18. Liu, Y., Chen, X., Liu, C., Song, D.: Delving into transferable adversarial examples and black-box attacks. arXiv preprint arXiv:1611.02770 (2016)

  19. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

  20. Martin Arjovsky, S., Bottou, L.: Wasserstein generative adversarial networks. In: Proceedings of the 34th International Conference on Machine Learning, Sydney (2017)

    Google Scholar 

  21. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  22. Mishra, A., Krishna Reddy, S., Mittal, A., Murthy, H.A.: A generative model for zero shot learning using conditional variational autoencoders. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 2188–2196 (2018)

    Google Scholar 

  23. Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial perturbations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1765–1773 (2017)

    Google Scholar 

  24. Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number of classes. In: 2008 Sixth Indian Conference on Computer Vision, Graphics and Image Processing, pp. 722–729. IEEE (2008)

    Google Scholar 

  25. Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017)

    Google Scholar 

  26. Patterson, G., Hays, J.: Sun attribute database: discovering, annotating, and recognizing scene attributes. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2751–2758. IEEE (2012)

    Google Scholar 

  27. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: relation network for few-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1199–1208 (2018)

    Google Scholar 

  28. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)

  29. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-UCSD birds-200-2011 dataset (2011)

    Google Scholar 

  30. Xian, Y., Lampert, C.H., Schiele, B., Akata, Z.: Zero-shot learning-a comprehensive evaluation of the good, the bad and the ugly. IEEE Trans. Pattern Anal. Mach. Intell. 41(9), 2251–2265 (2018)

    Article  Google Scholar 

  31. Xian, Y., Lorenz, T., Schiele, B., Akata, Z.: Feature generating networks for zero-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5542–5551 (2018)

    Google Scholar 

  32. Xie, C., et al.: Improving transferability of adversarial examples with input diversity. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2730–2739 (2019)

    Google Scholar 

  33. Ye, M., Guo, Y.: Progressive ensemble networks for zero-shot recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11728–11736 (2019)

    Google Scholar 

  34. Ye, Z., Lyu, F., Li, L., Fu, Q., Ren, J., Hu, F.: Sr-gan: semantic rectifying generative adversarial network for zero-shot learning. In: 2019 IEEE International Conference on Multimedia and Expo (ICME), pp. 85–90. IEEE (2019)

    Google Scholar 

  35. Yin, D., Lopes, R.G., Shlens, J., Cubuk, E.D., Gilmer, J.: A fourier perspective on model robustness in computer vision. In: Advances in Neural Information Processing Systems, pp. 13276–13286 (2019)

    Google Scholar 

  36. Zeng, X., et al.: Adversarial attacks beyond the image space. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4302–4311 (2019)

    Google Scholar 

  37. Zhang, L., Xiang, T., Gong, S.: Learning a deep embedding model for zero-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2021–2030 (2017)

    Google Scholar 

  38. Zhou, W., et al.: Transferable adversarial perturbations. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 452–467 (2018)

    Google Scholar 

  39. Zhu, P., Wang, H., Saligrama, V.: Generalized zero-shot recognition based on visually semantic embedding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2995–3003 (2019)

    Google Scholar 

  40. Zhu, Y., Elhoseiny, M., Liu, B., Peng, X., Elgammal, A.: A generative adversarial approach for zero-shot learning from noisy texts. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1004–1013 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Huang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 443 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yin, G., Wang, Y., Zhang, Y., Huang, S. (2022). Adversarial Bidirectional Feature Generation for Generalized Zero-Shot Learning Under Unreliable Semantics. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13535. Springer, Cham. https://doi.org/10.1007/978-3-031-18910-4_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18910-4_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18909-8

  • Online ISBN: 978-3-031-18910-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics