Abstract
Accurate polyp segmentation is becoming increasingly important in the early diagnosis of rectal cancer. In recent years, polyp segmentation methods represented by deep learning neural network have achieved great success, especially for the U-Net, however, accurate poly segmentation is still an extremely challenging task due to the low contrast and indistinct boundary between the foreground poly and the background, and diverse in the shape, size, color and texture at different stages of rectal cancer. To address these challenges and achieve more accurate polyp segmentation from the colonoscopy images, we propose a novel network called bi-Decoder network with feedback (BiDFNet) to further improve the accuracy of polyp segmentation, especially for the small ones. It is well known that different scales information and different level features play important roles in accurate target segmentation, therefore, in the proposed BiDFNet, we first propose a bi-decoder with feedback architecture which works in both “coarse-to-fine” and “fine-to-coarse” manners for achieving better information flow exploitation across different scales. Then, at each scale, we construct a residual connection mode (RCM) to dynamically fuse shallow-level features and deep-level features for distilling more effective information. Extensive experiments on five popular polyp segmentation benchmarks (Kvasir, CVC-ClinicDB, ETIS, CVC-ColonDB and Endoscene) shows that our approach has stronger generalization and robustness. The results outperform the state-of-the-art methods by a large margin both on the objective evaluation metric and the subjective visual effect.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vilariño, F.: WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians. Computer. Med. Imaging Graph. 43, 99–111 (2015)
Bernal, J., Sánchez, J., Vilarino, F.: Towards automatic polyp detection with a polyp appearance model. Pattern Recogn. 45(9), 3166–3182 (2012)
Dong, B., Wang, W., Fan, D.P., Li, J., Fu, H., Shao, L.: Polyp-PVT: polyp segmentation with pyramid vision transformers. arXiv preprint arXiv:2108.06932 (2021)
Fan, D.-P., et al.: PraNet: parallel reverse attention network for polyp segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 263–273. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_26
Fang, Y., Chen, C., Yuan, Y., Tong, K.: Selective feature aggregation network with area-boundary constraints for polyp segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 302–310. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_34
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)
Huang, C.H., Wu, H.Y., Lin, Y.L.: HardNet-MSEG: a simple encoder-decoder polyp segmentation neural network that achieves over 0.9 mean dice and 86 fps. arXiv preprint arXiv:2101.07172 (2021)
Jha, D., Riegler, M.A., Johansen, D., Halvorsen, P., Johansen, H.D.: Doubleu-Net: a deep convolutional neural network for medical image segmentation. In: 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), pp. 558–564. IEEE (2020)
Jha, D., et al.: Kvasir-SEG: a segmented polyp dataset. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 451–462. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_37
Jha, D., et al.: ResuNet++: an advanced architecture for medical image segmentation. In: 2019 IEEE International Symposium on Multimedia (ISM), pp. 225–2255. IEEE (2019)
Kim, T., Lee, H., Kim, D.: Uacanet: uncertainty augmented context attention for polyp segmentation. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 2167–2175 (2021)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
Lou, A., Guan, S., Loew, M.: CaraNet: context axial reverse attention network for segmentation of small medical objects. arXiv preprint arXiv:2108.07368 (2021)
Murugesan, B., Sarveswaran, K., Shankaranarayana, S.M., Ram, K., Joseph, J., Sivaprakasam, M.: Psi-Net: Shape and boundary aware joint multi-task deep network for medical image segmentation. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 7223–7226. IEEE (2019)
Patel, K., Bur, A.M., Wang, G.: Enhanced u-net: a feature enhancement network for polyp segmentation. In: 2021 18th Conference on Robots and Vision (CRV), pp. 181–188. IEEE (2021)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Silva, J., Histace, A., Romain, O., Dray, X., Granado, B.: Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer. Int. J. Comput. Assist. Radiol. Surg. 9(2), 283–293 (2014)
Tajbakhsh, N., Gurudu, S.R., Liang, J.: Automated polyp detection in colonoscopy videos using shape and context information. IEEE Trans. Med. Imaging 35(2), 630–644 (2015)
Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)
Vázquez, D., et al.: A benchmark for endoluminal scene segmentation of colonoscopy images. J. Healthc. Eng. 2017 (2017)
Wang, W., et al.: Pvt v2: improved baselines with pyramid vision transformer. Comput. Vis. Media, 1–10 (2022)
Wei, J., Hu, Y., Zhang, R., Li, Z., Zhou, S.K., Cui, S.: Shallow attention network for polyp segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 699–708. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_66
Zhang, R., Li, G., Li, Z., Cui, S., Qian, D., Yu, Y.: Adaptive context selection for polyp segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 253–262. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_25
Zhang, Y., Liu, H., Hu, Q.T.: Fusing transformers and CNNs for medical image segmentation. arxiv. arXiv preprint arXiv:2102.08005 (2021)
Zhao, X., Zhang, L., Lu, H.: Automatic polyp segmentation via multi-scale subtraction network. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 120–130. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_12
Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Tang, S., Qiu, J., Xie, X., Ran, H., Zhang, G. (2022). BiDFNet: Bi-decoder and Feedback Network for Automatic Polyp Segmentation with Vision Transformers. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13535. Springer, Cham. https://doi.org/10.1007/978-3-031-18910-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-18910-4_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-18909-8
Online ISBN: 978-3-031-18910-4
eBook Packages: Computer ScienceComputer Science (R0)