Abstract
Prototype learning and decoder construction are the keys for few-shot segmentation. However, existing methods use only a single prototype generation mode, which can not cope with the intractable problem of objects with various scales. Moreover, the one-way forward propagation adopted by previous methods may cause information dilution from registered features during the decoding process. In this research, we propose a rich prototype generation module (RPGM) and a recurrent prediction enhancement module (RPEM) to reinforce the prototype learning paradigm and build a unified memory-augmented decoder for few-shot segmentation, respectively. Specifically, the RPGM combines superpixel and K-means clustering to generate rich prototype features with complementary scale relationships and adapt the scale gap between support and query images. The RPEM utilizes the recurrent mechanism to design a round-way propagation decoder. In this way, registered features can provide object-aware information continuously. Experiments show that our method consistently outperforms other competitors on two popular benchmarks PASCAL-\({{5}^{i}}\) and COCO-\({{20}^{i}}\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE TPAMI 39, 2481–2495 (2017)
Boudiaf, M., Kervadec, H., Masud, Z.I., Piantanida, P., Ben Ayed, I., Dolz, J.: Few-shot segmentation without meta-learning: a good transductive inference is all you need? In: CVPR, pp. 13979–13988 (2021)
Cai, Q., Pan, Y., Yao, T., Yan, C., Mei, T.: Memory matching networks for one-shot image recognition. In: CVPR, pp. 4080–4088 (2018)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE TPAMI 40, 834–848 (2017)
Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)
Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: ECCV, pp. 801–818 (2018)
Dong, N., Xing, E.P.: Few-shot semantic segmentation with prototype learning. In: BMVC, no. 4 (2018)
Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. IJCV 88, 303–338 (2010). https://doi.org/10.1007/s11263-009-0275-4
Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: ICML, pp. 1126–1135 (2017)
Hariharan, B., Arbeláez, P., Bourdev, L., Maji, S., Malik, J.: Semantic contours from inverse detectors. In: ICCV, pp. 991–998 (2011)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)
Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., Liu, W.: Ccnet: criss-cross attention for semantic segmentation. In: ICCV, pp. 603–612 (2019)
Li, G., Jampani, V., Sevilla-Lara, L., Sun, D., Kim, J., Kim, J.: Adaptive prototype learning and allocation for few-shot segmentation. In: CVPR, pp. 8334–8343 (2021)
Li, X., et al.: Improving semantic segmentation via decoupled body and edge supervision. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part XVII. LNCS, vol. 12362, pp. 435–452. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58520-4_26
Lin, T.Y., et al.: Microsoft coco: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, Y., Zhang, X., Zhang, S., He, X.: Part-aware prototype network for few-shot semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part IX. LNCS, vol. 12354, pp. 142–158. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_9
Nguyen, K., Todorovic, S.: Feature weighting and boosting for few-shot segmentation. In: ICCV, pp. 622–631 (2019)
Qi, H., Brown, M., Lowe, D.G.: Low-shot learning with imprinted weights. In: CVPR, pp. 5822–5830 (2018)
Rusu, A.A., et al.: Meta-learning with latent embedding optimization. arXiv preprint arXiv:1807.05960 (2018)
Shaban, A., Bansal, S., Liu, Z., Essa, I., Boots, B.: One-shot learning for semantic segmentation. arXiv preprint arXiv:1709.03410 (2017)
Tang, H., Liu, X., Sun, S., Yan, X., Xie, X.: Recurrent mask refinement for few-shot medical image segmentation. In: ICCV, pp. 3918–3928 (2021)
Tian, Z., Zhao, H., Shu, M., Yang, Z., Li, R., Jia, J.: Prior guided feature enrichment network for few-shot segmentation. IEEE TPAMI 44, 1050–1065 (2022)
Vinyals, O., Blundell, C., Lillicrap, T., kavukcuoglu, k., Wierstra, D.: Matching networks for one shot learning. In: NeurIPS (2016)
Wang, H., Zhang, X., Hu, Y., Yang, Y., Cao, X., Zhen, X.: Few-shot semantic segmentation with democratic attention networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part XIII. LNCS, vol. 12358, pp. 730–746. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_43
Wang, K., Liew, J.H., Zou, Y., Zhou, D., Feng, J.: Panet: few-shot image semantic segmentation with prototype alignment. In: ICCV, pp. 9197–9206 (2019)
Yang, B., Liu, C., Li, B., Jiao, J., Ye, Q.: Prototype mixture models for few-shot semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part VIII. LNCS, vol. 12353, pp. 763–778. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_45
Zhang, B., Xiao, J., Qin, T.: Self-guided and cross-guided learning for few-shot segmentation. In: CVPR, pp. 8312–8321 (2021)
Zhang, C., Cai, Y., Lin, G., Shen, C.: Deepemd: few-shot image classification with differentiable earth mover’s distance and structured classifiers. In: CVPR, pp. 12203–12213 (2020)
Zhang, C., Lin, G., Liu, F., Guo, J., Wu, Q., Yao, R.: Pyramid graph networks with connection attentions for region-based one-shot semantic segmentation. In: ICCV, pp. 9587–9595 (2019)
Zhang, C., Lin, G., Liu, F., Yao, R., Shen, C.: Canet: class-agnostic segmentation networks with iterative refinement and attentive few-shot learning. In: CVPR, pp. 5217–5226 (2019)
Zhang, H., et al.: Context encoding for semantic segmentation. In: CVPR, pp. 7151–7160 (2018)
Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: CVPR, pp. 2881–2890 (2017)
Zhao, H., et al.: Psanet: point-wise spatial attention network for scene parsing. In: ECCV, pp. 267–283 (2018)
Acknowledgements
This work was supported by the National Natural Science Foundation of China #62176039.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, H., Zhao, X., Pang, Y., Qi, J. (2022). Few-Shot Segmentation via Rich Prototype Generation and Recurrent Prediction Enhancement. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13537. Springer, Cham. https://doi.org/10.1007/978-3-031-18916-6_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-18916-6_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-18915-9
Online ISBN: 978-3-031-18916-6
eBook Packages: Computer ScienceComputer Science (R0)