Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Stage-Mutual-Affine Network for Single Remote Sensing Image Super-Resolution

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13537))

Included in the following conference series:

Abstract

The deep neural network (DNN) has made significant progre-ss in the single remote sensing image super-resolution (SRSISR). The success of DNN-based SRSISR methods mainly stems from the use of the global information and the fusion of shallow features and the deep features, which fits the non-local self-similarity characteristic of the remote sensing image very well. However, for the fusion of different depth (level) features, most DNN-based SRSISR methods always use the simple skip-connection, e.g. the element-wise addition or concatenation, to transform the feature coming from preceding layers to later layers directly. To achieve sufficient complementation between different levels and capture more informative features, in this paper, we propose a stage-mutual-affine network (SMAN) for high-quality SRSISR. First, for the use of the global information, we construct a convolution-transformer dual-branch module (CTDM), in which we propose an adaptive multi-head attention (AMHA) strategy to dynamically rescale the head-wise features of the transformer for more effective global information extraction. Then, the global information is fused with the local structure information extracted by the convolution branch for more accurate recurrence information reconstruction. Second, a novel hierarchical feature aggregation module (HFAM) is proposed to effectively fuse shallow features and deep features by using a mutual affine convolution operation. The superiority of the proposed HFAM is that it achieves sufficient complementation and enhances the representational capacity of the network by extracting the global information and exploiting the interdependencies between different levels of features, effectively. Extensive experiments demonstrate the superior performance of our SMAN over the state-of-the-art methods in terms of both qualitative evaluation and quantitative metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anwar, S., Barnes, N.: Densely residual Laplacian super-resolution. IEEE Trans. Pattern Anal. Mach. Intell. 44(3), 1192–1204 (2022)

    Article  Google Scholar 

  2. Chang, H., Yeung, D.Y., Xiong, Y.: Super-resolution through neighbor embedding. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2004. CVPR 2004, vol. 1, p. I (2004)

    Google Scholar 

  3. Dai, T., Cai, J., Zhang, Y., Xia, S.T., Zhang, L.: Second-order attention network for single image super-resolution. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11057–11066 (2019)

    Google Scholar 

  4. Dong, X., Sun, X., Jia, X., Xi, Z., Gao, L., Zhang, B.: Remote sensing image super-resolution using novel dense-sampling networks. IEEE Trans. Geosci. Remote Sens. 59(2), 1618–1633 (2021)

    Article  Google Scholar 

  5. Dong, X., Wang, L., Sun, X., Jia, X., Gao, L., Zhang, B.: Remote sensing image super-resolution using second-order multi-scale networks. IEEE Trans. Geosci. Remote Sens. 59(4), 3473–3485 (2021)

    Article  Google Scholar 

  6. Haris, M., Shakhnarovich, G., Ukita, N.: Deep back-projection networks for super-resolution. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1664–1673 (2018)

    Google Scholar 

  7. Haut, J.M., Paoletti, M.E., Fernández-Beltran, R., Plaza, J., Plaza, A., Li, J.: Remote sensing single-image superresolution based on a deep compendium model. IEEE Geosci. Remote Sens. Lett. 16(9), 1432–1436 (2019)

    Article  Google Scholar 

  8. Hou, B., Zhou, K., Jiao, L.: Adaptive super-resolution for remote sensing images based on sparse representation with global joint dictionary model. IEEE Trans. Geosci. Remote Sens. 56(4), 2312–2327 (2017)

    Article  Google Scholar 

  9. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  10. Ji, X., Lu, Y., Guo, L.: Image super-resolution with deep convolutional neural network. In: 2016 IEEE First International Conference on Data Science in Cyberspace (DSC), pp. 626–630 (2016)

    Google Scholar 

  11. Jo, Y., Oh, S.W., Vajda, P., Kim, S.J.: Tackling the ill-posedness of super-resolution through adaptive target generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16236–16245 (2021)

    Google Scholar 

  12. Kong, X., Zhao, H., Qiao, Y., Dong, C.: ClassSR: a general framework to accelerate super-resolution networks by data characteristic. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12016–12025 (2021)

    Google Scholar 

  13. Lei, S., Shi, Z.: Hybrid-scale self-similarity exploitation for remote sensing image super-resolution. IEEE Trans. Geosci. Remote Sens. 60, 1–10 (2022)

    Article  Google Scholar 

  14. Lei, S., Shi, Z., Zou, Z.: Super-resolution for remote sensing images via local-global combined network. IEEE Geosci. Remote Sens. Lett. 14(8), 1243–1247 (2017)

    Article  Google Scholar 

  15. Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks for single image super-resolution. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1132–1140 (2017)

    Google Scholar 

  16. Mei, Y., Fan, Y., Zhou, Y.: Image super-resolution with non-local sparse attention. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3516–3525 (2021)

    Google Scholar 

  17. Mei, Y., Fan, Y., Zhou, Y., Huang, L., Huang, T.S., Shi, H.: Image super-resolution with cross-scale non-local attention and exhaustive self-exemplars mining. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5689–5698 (2020)

    Google Scholar 

  18. Niu, B., et al.: Single image super-resolution via a holistic attention network. In: European Conference on Computer Vision, pp. 191–207. Springer (2020). https://doi.org/10.1007/978-3-030-58610-2_12

  19. Pan, Z., Ma, W., Guo, J., Lei, B.: Super-resolution of single remote sensing image based on residual dense backprojection networks. IEEE Trans. Geosci. Remote Sens. 57(10), 7918–7933 (2019)

    Article  Google Scholar 

  20. Pan, Z., Yu, J., Huang, H., Hu, S., Zhang, A., Ma, H.: Super-resolution based on compressive sensing and structural self-similarity for remote sensing images. IEEE Trans. Geosci. Remote Sens. 51(9), 4864–4876 (2013)

    Article  Google Scholar 

  21. Qiu, Y., Wang, R., Tao, D., Cheng, J.: Embedded block residual network: a recursive restoration model for single-image super-resolution. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4179–4188 (2019)

    Google Scholar 

  22. Shao, Z., Wang, L., Wang, Z., Deng, J.: Remote sensing image super-resolution using sparse representation and coupled sparse autoencoder. IEEE J. Sel. Top. Appl. Earth Obser. Remote Sens. 12(8), 2663–2674 (2019)

    Article  Google Scholar 

  23. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1874–1883 (2016)

    Google Scholar 

  24. Song, D., Wang, Y., Chen, H., Xu, C., Xu, C., Tao, D.: AdderSR: towards energy efficient image super-resolution. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15643–15652 (2021)

    Google Scholar 

  25. Wang, L., et al.: Exploring sparsity in image super-resolution for efficient inference. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4917–4926 (2021)

    Google Scholar 

  26. Wang, T., Sun, W., Qi, H., Ren, P.: Aerial image super resolution via wavelet multiscale convolutional neural networks. IEEE Geosci. Remote Sens. Lett. 15(5), 769–773 (2018)

    Article  Google Scholar 

  27. Wen, W., Ren, W., Shi, Y., Nie, Y., Zhang, J., Cao, X.: Video super-resolution via a spatio-temporal alignment network. IEEE Trans. Image Process. 31, 1761–1773 (2022)

    Article  Google Scholar 

  28. Yan, Y., Ren, W., Hu, X., Li, K., Shen, H., Cao, X.: SRGAT: Single image super-resolution with graph attention network. IEEE Trans. Image Process. 30, 4905–4918 (2021)

    Article  Google Scholar 

  29. Zhang, D., Shao, J., Li, X., Shen, H.T.: Remote sensing image super-resolution via mixed high-order attention network. IEEE Trans. Geosci. Remote Sens. 59(6), 5183–5196 (2021)

    Article  Google Scholar 

  30. Zhang, S., Yuan, Q., Li, J., Sun, J., Zhang, X.: Scene-adaptive remote sensing image super-resolution using a multiscale attention network. IEEE Trans. Geosci. Remote Sens. 58(7), 4764–4779 (2020)

    Article  Google Scholar 

  31. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 286–301 (2018)

    Google Scholar 

  32. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2472–2481 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Tang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 6125 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, S., Liu, J., Xie, X., Yang, S., Zeng, W., Wang, X. (2022). A Stage-Mutual-Affine Network for Single Remote Sensing Image Super-Resolution. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13537. Springer, Cham. https://doi.org/10.1007/978-3-031-18916-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18916-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18915-9

  • Online ISBN: 978-3-031-18916-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics