Abstract
With the development of computer technology, the Internet floods with abundant multimodal data. For better understanding users’ feelings, multimodal sentiment analysis and sarcasm detection have become popular research topics. However, previous studies did not take noise into account when designing models. In this paper, based on designing a novel architecture, we also introduce a momentum distillation method to improve the model’s performance from noisy data. Specifically, we propose the Transformer-Based Network with Momentum Distillation (TBNMD). For model architecture, we first encode different modalities to obtain hidden representations. Then we use a multimodal interaction module to obtain text-guided image features and image-guided text features. After that, we use a multimodal fusion module to obtain the fusion features. For momentum distillation, it is a self-distillation method. During the training process, the teacher model generates semantically similar samples as additional supervision of the student model. Experimental results on five publicly available datasets demonstrate the effectiveness of our method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The dataset is publicly available via the link: https://github.com/headacheboy/data-of-multimodal-sarcasm-detection.
- 2.
The two TMSC datasets are publicly available via the link: https://github.com/jefferyYu/TomBERT.
References
Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)
Cai, Y., Cai, H., Wan, X.: Multi-modal sarcasm detection in twitter with hierarchical fusion model. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 2506–2515 (2019)
Castro, S., Hazarika, D., Pérez-Rosas, V., Zimmermann, R., Mihalcea, R., Poria, S.: Towards multimodal sarcasm detection (an _obviously_ perfect paper). arXiv preprint arXiv:1906.01815 (2019)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)
Jagtap, V., Pawar, K.: Analysis of different approaches to sentence-level sentiment classification. Int. J. Sci. Eng. Technol. 2(3), 164–170 (2013)
Jiang, T., Wang, J., Liu, Z., Ling, Y.: Fusion-extraction network for multimodal sentiment analysis. Adv. Knowl. Discov. Data Min. 12085, 785 (2020)
Joshi, A., Bhattacharyya, P., Carman, M.J.: Automatic sarcasm detection: a survey. ACM Comput. Surv. (CSUR) 50(5), 1–22 (2017)
Kaur, R., Kautish, S.: Multimodal sentiment analysis: a survey and comparison. Int. J. Serv. Sci. Manag. Eng. Technol. (IJSSMET) 10(2), 38–58 (2019)
Li, J., Selvaraju, R.R., Gotmare, A.D., Joty, S., Xiong, C., Hoi, S.: Align before fuse: vision and language representation learning with momentum distillation. arXiv preprint arXiv:2107.07651 (2021)
Li, X., Bing, L., Lam, W., Shi, B.: Transformation networks for target-oriented sentiment classification. arXiv preprint arXiv:1805.01086 (2018)
Liu, Y., et al.: Roberta: a robustly optimized Bert pretraining approach. arXiv preprint arXiv:1907.11692 (2019)
Lu, D., Neves, L., Carvalho, V., Zhang, N., Ji, H.: Visual attention model for name tagging in multimodal social media. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1990–1999 (2018)
Niu, T., Zhu, S., Pang, L., El Saddik, A.: Sentiment analysis on multi-view social data. In: Tian, Q., Sebe, N., Qi, G.-J., Huet, B., Hong, R., Liu, X. (eds.) MMM 2016. LNCS, vol. 9517, pp. 15–27. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27674-8_2
Pan, H., Lin, Z., Fu, P., Qi, Y., Wang, W.: Modeling intra and inter-modality incongruity for multi-modal sarcasm detection. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings, pp. 1383–1392 (2020)
Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. Adv. Neural. Inf. Process. Syst. 32, 8026–8037 (2019)
Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention. In: International Conference on Machine Learning, pp. 10347–10357. PMLR (2021)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)
Wang, X., Sun, X., Yang, T., Wang, H.: Building a bridge: a method for image-text sarcasm detection without pretraining on image-text data. In: Proceedings of the First International Workshop on Natural Language Processing Beyond Text, pp. 19–29 (2020)
Wu, Y., et al.: Modeling incongruity between modalities for multimodal sarcasm detection. IEEE Multimedia 28(2), 86–95 (2021)
Xu, N.: Analyzing multimodal public sentiment based on hierarchical semantic attentional network. In: 2017 IEEE International Conference on Intelligence and Security Informatics (ISI), pp. 152–154. IEEE (2017)
Xu, N., Mao, W.: Multisentinet: a deep semantic network for multimodal sentiment analysis. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 2399–2402 (2017)
Xu, N., Mao, W., Chen, G.: A co-memory network for multimodal sentiment analysis. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 929–932 (2018)
Xu, N., Zeng, Z., Mao, W.: Reasoning with multimodal sarcastic tweets via modeling cross-modality contrast and semantic association. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3777–3786 (2020)
Yang, X., Feng, S., Wang, D., Zhang, Y.: Image-text multimodal emotion classification via multi-view attentional network. IEEE Trans. Multimedia 23, 4014–4026 (2020)
Yang, X., Feng, S., Zhang, Y., Wang, D.: Multimodal sentiment detection based on multi-channel graph neural networks. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 328–339 (2021)
Yao, F., Sun, X., Yu, H., Zhang, W., Liang, W., Fu, K.: Mimicking the brain’s cognition of sarcasm from multidisciplines for twitter sarcasm detection. IEEE Trans. Neural Networks Learn. Syst. (2021)
Yu, J., Jiang, J.: Adapting Bert for target-oriented multimodal sentiment classification. In: IJCAI (2019)
Yu, J., Jiang, J., Xia, R.: Entity-sensitive attention and fusion network for entity-level multimodal sentiment classification. IEEE/ACM Trans. Audio Speech Lang. Process. 28, 429–439 (2019)
Yu, W., et al.: Ch-sims: a Chinese multimodal sentiment analysis dataset with fine-grained annotation of modality. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3718–3727 (2020)
Zadeh, A., Chen, M., Poria, S., Cambria, E., Morency, L.P.: Tensor fusion network for multimodal sentiment analysis. arXiv preprint arXiv:1707.07250 (2017)
Zhang, L., Wang, S., Liu, B.: Deep learning for sentiment analysis: a survey. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 8(4), e1253 (2018)
Zhang, Q., Fu, J., Liu, X., Huang, X.: Adaptive co-attention network for named entity recognition in tweets. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, S., Deng, W., Hu, J. (2022). Momentum Distillation Improves Multimodal Sentiment Analysis. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13534. Springer, Cham. https://doi.org/10.1007/978-3-031-18907-4_33
Download citation
DOI: https://doi.org/10.1007/978-3-031-18907-4_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-18906-7
Online ISBN: 978-3-031-18907-4
eBook Packages: Computer ScienceComputer Science (R0)