Nothing Special   »   [go: up one dir, main page]

Skip to main content

Momentum Distillation Improves Multimodal Sentiment Analysis

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13534))

Included in the following conference series:

Abstract

With the development of computer technology, the Internet floods with abundant multimodal data. For better understanding users’ feelings, multimodal sentiment analysis and sarcasm detection have become popular research topics. However, previous studies did not take noise into account when designing models. In this paper, based on designing a novel architecture, we also introduce a momentum distillation method to improve the model’s performance from noisy data. Specifically, we propose the Transformer-Based Network with Momentum Distillation (TBNMD). For model architecture, we first encode different modalities to obtain hidden representations. Then we use a multimodal interaction module to obtain text-guided image features and image-guided text features. After that, we use a multimodal fusion module to obtain the fusion features. For momentum distillation, it is a self-distillation method. During the training process, the teacher model generates semantically similar samples as additional supervision of the student model. Experimental results on five publicly available datasets demonstrate the effectiveness of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The dataset is publicly available via the link: https://github.com/headacheboy/data-of-multimodal-sarcasm-detection.

  2. 2.

    The two TMSC datasets are publicly available via the link: https://github.com/jefferyYu/TomBERT.

References

  1. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)

  2. Cai, Y., Cai, H., Wan, X.: Multi-modal sarcasm detection in twitter with hierarchical fusion model. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 2506–2515 (2019)

    Google Scholar 

  3. Castro, S., Hazarika, D., Pérez-Rosas, V., Zimmermann, R., Mihalcea, R., Poria, S.: Towards multimodal sarcasm detection (an _obviously_ perfect paper). arXiv preprint arXiv:1906.01815 (2019)

  4. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  5. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  6. Jagtap, V., Pawar, K.: Analysis of different approaches to sentence-level sentiment classification. Int. J. Sci. Eng. Technol. 2(3), 164–170 (2013)

    Google Scholar 

  7. Jiang, T., Wang, J., Liu, Z., Ling, Y.: Fusion-extraction network for multimodal sentiment analysis. Adv. Knowl. Discov. Data Min. 12085, 785 (2020)

    Article  Google Scholar 

  8. Joshi, A., Bhattacharyya, P., Carman, M.J.: Automatic sarcasm detection: a survey. ACM Comput. Surv. (CSUR) 50(5), 1–22 (2017)

    Article  Google Scholar 

  9. Kaur, R., Kautish, S.: Multimodal sentiment analysis: a survey and comparison. Int. J. Serv. Sci. Manag. Eng. Technol. (IJSSMET) 10(2), 38–58 (2019)

    Google Scholar 

  10. Li, J., Selvaraju, R.R., Gotmare, A.D., Joty, S., Xiong, C., Hoi, S.: Align before fuse: vision and language representation learning with momentum distillation. arXiv preprint arXiv:2107.07651 (2021)

  11. Li, X., Bing, L., Lam, W., Shi, B.: Transformation networks for target-oriented sentiment classification. arXiv preprint arXiv:1805.01086 (2018)

  12. Liu, Y., et al.: Roberta: a robustly optimized Bert pretraining approach. arXiv preprint arXiv:1907.11692 (2019)

  13. Lu, D., Neves, L., Carvalho, V., Zhang, N., Ji, H.: Visual attention model for name tagging in multimodal social media. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1990–1999 (2018)

    Google Scholar 

  14. Niu, T., Zhu, S., Pang, L., El Saddik, A.: Sentiment analysis on multi-view social data. In: Tian, Q., Sebe, N., Qi, G.-J., Huet, B., Hong, R., Liu, X. (eds.) MMM 2016. LNCS, vol. 9517, pp. 15–27. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27674-8_2

    Chapter  Google Scholar 

  15. Pan, H., Lin, Z., Fu, P., Qi, Y., Wang, W.: Modeling intra and inter-modality incongruity for multi-modal sarcasm detection. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings, pp. 1383–1392 (2020)

    Google Scholar 

  16. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. Adv. Neural. Inf. Process. Syst. 32, 8026–8037 (2019)

    Google Scholar 

  17. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention. In: International Conference on Machine Learning, pp. 10347–10357. PMLR (2021)

    Google Scholar 

  18. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  19. Wang, X., Sun, X., Yang, T., Wang, H.: Building a bridge: a method for image-text sarcasm detection without pretraining on image-text data. In: Proceedings of the First International Workshop on Natural Language Processing Beyond Text, pp. 19–29 (2020)

    Google Scholar 

  20. Wu, Y., et al.: Modeling incongruity between modalities for multimodal sarcasm detection. IEEE Multimedia 28(2), 86–95 (2021)

    Article  Google Scholar 

  21. Xu, N.: Analyzing multimodal public sentiment based on hierarchical semantic attentional network. In: 2017 IEEE International Conference on Intelligence and Security Informatics (ISI), pp. 152–154. IEEE (2017)

    Google Scholar 

  22. Xu, N., Mao, W.: Multisentinet: a deep semantic network for multimodal sentiment analysis. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 2399–2402 (2017)

    Google Scholar 

  23. Xu, N., Mao, W., Chen, G.: A co-memory network for multimodal sentiment analysis. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 929–932 (2018)

    Google Scholar 

  24. Xu, N., Zeng, Z., Mao, W.: Reasoning with multimodal sarcastic tweets via modeling cross-modality contrast and semantic association. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3777–3786 (2020)

    Google Scholar 

  25. Yang, X., Feng, S., Wang, D., Zhang, Y.: Image-text multimodal emotion classification via multi-view attentional network. IEEE Trans. Multimedia 23, 4014–4026 (2020)

    Article  Google Scholar 

  26. Yang, X., Feng, S., Zhang, Y., Wang, D.: Multimodal sentiment detection based on multi-channel graph neural networks. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 328–339 (2021)

    Google Scholar 

  27. Yao, F., Sun, X., Yu, H., Zhang, W., Liang, W., Fu, K.: Mimicking the brain’s cognition of sarcasm from multidisciplines for twitter sarcasm detection. IEEE Trans. Neural Networks Learn. Syst. (2021)

    Google Scholar 

  28. Yu, J., Jiang, J.: Adapting Bert for target-oriented multimodal sentiment classification. In: IJCAI (2019)

    Google Scholar 

  29. Yu, J., Jiang, J., Xia, R.: Entity-sensitive attention and fusion network for entity-level multimodal sentiment classification. IEEE/ACM Trans. Audio Speech Lang. Process. 28, 429–439 (2019)

    Article  Google Scholar 

  30. Yu, W., et al.: Ch-sims: a Chinese multimodal sentiment analysis dataset with fine-grained annotation of modality. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3718–3727 (2020)

    Google Scholar 

  31. Zadeh, A., Chen, M., Poria, S., Cambria, E., Morency, L.P.: Tensor fusion network for multimodal sentiment analysis. arXiv preprint arXiv:1707.07250 (2017)

  32. Zhang, L., Wang, S., Liu, B.: Deep learning for sentiment analysis: a survey. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 8(4), e1253 (2018)

    Article  Google Scholar 

  33. Zhang, Q., Fu, J., Liu, X., Huang, X.: Adaptive co-attention network for named entity recognition in tweets. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihong Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, S., Deng, W., Hu, J. (2022). Momentum Distillation Improves Multimodal Sentiment Analysis. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13534. Springer, Cham. https://doi.org/10.1007/978-3-031-18907-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18907-4_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18906-7

  • Online ISBN: 978-3-031-18907-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics