Nothing Special   »   [go: up one dir, main page]

Skip to main content

AI Literacy on Human-Centered Considerations

  • Chapter
  • First Online:
AI Literacy in K-16 Classrooms

Abstract

Part II of this book gave us an overview of AI literacy across educational levels. Several models of AI literacy education, in particular Bloom’s taxonomy, TPACK model, as well as the P21’s Framework for the 21st Century Learning (2009) that comprises key digital competencies that inform instructional designers what knowledge, skills, and attitudes students should equip with.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Chen, H., Gomez, C., Huang, C. M., & Unberath, M. (2022). Explainable medical imaging AI needs human-centered design: Guidelines and evidence from a systematic review. npj Digital Medicine, 5(1), 1–15.

    Article  Google Scholar 

  • Chiu, M. C., Hwang, G. J., Hsia, L. H., & Shyu, F. M. (2022). Artificial intelligence-supported art education: A deep learning-based system for promoting university students’ artwork appreciation and painting outcomes. Interactive Learning Environments, 1–19.

    Google Scholar 

  • Dam, R., & Siang, T. (2018). Five stages in the design thinking process. Retrieved from https://www.interaction-design.org/literature/article/5-stages-in-the-designthinking-process.

  • Dhungel, A. K., Wessel, D., Zoubir, M., & Heine, M. (2021). Too bureaucratic to flexibly learn about AI? The human-centered development of a MOOC on artificial intelligence in and for public administration. In Mensch und computer 2021 (pp. 563–567).

    Google Scholar 

  • Dignum, V. (2019). Responsible artificial intelligence: How to develop and use AI in a responsible way. Springer Nature.

    Book  Google Scholar 

  • Hannafin, M. J., & Land, S. M. (2000). Technology and student-centered learning in higher education: Issues and practices. Journal of Computing in Higher Education, 12(1), 3–30.

    Article  Google Scholar 

  • Ipsita, A., Erickson, L., Dong, Y., Huang, J., Bushinski, A. K., Saradhi, S., Villanueva, A., Peppler, K., Redick, T., & Ramani, K. (2022, April). Towards modeling of virtual reality welding simulators to promote accessible and scalable training. In CHI conference on Human Factors in Computing Systems (pp. 1–21).

    Google Scholar 

  • Ives, J., & Castillo-Montoya, M. (2020). First-generation college students as academic learners: A systematic review. Review of Educational Research, 90(2), 139–178.

    Article  Google Scholar 

  • Jain, A., Way, D., Gupta, V., Gao, Y., de Oliveira Marinho, G., Hartford, J., et al. (2021). Development and assessment of an artificial intelligence–based tool for skin condition diagnosis by primary care physicians and nurse practitioners in teledermatology practices. JAMA Network Open, 4(4), e217249–e217249.

    Article  Google Scholar 

  • Jonassen, D. H. (2000). Computers as Mindtools for schools: Engaging critical thinking. Merrill/Prentice-Hall.

    Google Scholar 

  • Kong, H., Yuan, Y., Baruch, Y., Bu, N., Jiang, X., & Wang, K. (2021). Influences of artificial intelligence (AI) awareness on career competency and job burnout. International Journal of Contemporary Hospitality Management.

    Google Scholar 

  • Lin, P. Y., Chai, C. S., Jong, M. S. Y., Dai, Y., Guo, Y., & Qin, J. (2021). Modeling the structural relationship among primary students’ motivation to learn artificial intelligence. Computers and Education: Artificial Intelligence, 2, 100006.

    Google Scholar 

  • Long, D., & Magerko, B. (2020, April). What is AI literacy? Competencies and design considerations. In Proceedings of the 2020 CHI conference on human factors in computing systems (pp. 1–16).

    Google Scholar 

  • Luckin, R. (2017). Towards artificial intelligence-based assessment systems. Nature Human Behaviour, 1(3), 1–3.

    Article  Google Scholar 

  • Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences. Artificial Intelligence, 267, 1–38.

    Article  Google Scholar 

  • MIT. (2019). Computing and artificial intelligence: Humanistic perspectives from MIT. Retreived from https://news.mit.edu/2019/computing-and-ai-humanistic-perspectives-0924

  • Morrison, K. (2021). Artificial intelligence and the NHS: A qualitative exploration of the factors influencing adoption. Future Healthcare Journal, 8(3), e648.

    Article  Google Scholar 

  • Ng, D. T. K., Leung, J. K. L., Chu, K. W. S., & Qiao, M. S. (2021a). AI literacy: Definition, teaching, evaluation and ethical issues. Proceedings of the Association for Information Science and Technology, 58(1), 504–509.

    Article  Google Scholar 

  • Ng, D. T. K., Leung, J. K. L., Chu, S. K. W., & Qiao, M. S. (2021b). Conceptualizing AI literacy: An exploratory review. Computers and Education: Artificial Intelligence, 2, 100041.

    Google Scholar 

  • Ng, D. T. K., Luo, W., Chan, H. M. Y., & Chu, S. K. W. (2022). Using digital story writing as a pedagogy to develop AI literacy among primary students. Computers and Education: Artificial Intelligence, 3, 100054.

    Google Scholar 

  • Patrizio, A. (2017). Beware of companies claiming products have AI capabilities. Retrieved from https://www.networkworld.com/article/3209713/beware-of-companies-claiming-products-have-ai-capabilities.html

  • Pérez-Ortiz, M., Rivasplata, O., Shawe-Taylor, J., & Szepesvári, C. (2021). Tighter risk certificates for neural networks. Journal of Machine Learning Research, 22.

    Google Scholar 

  • Renz, A., & Vladova, G. (2021). Reinvigorating the discourse on human-centered artificial intelligence in educational technologies. Technology Innovation Management Review, 11(5).

    Google Scholar 

  • Reinhardt, K. (2022). Trust and trustworthiness in AI ethics. AI and Ethics, 1–10. https://doi.org/10.1007/s43681-022-00200-5

  • Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1(5), 206–215.

    Article  Google Scholar 

  • Shneiderman, B. (2020a). Human-centered artificial intelligence: Reliable, safe & trustworthy. International Journal of Human–Computer Interaction, 36(6), 495–504.

    Article  Google Scholar 

  • Shneiderman, B. (2020b). Human-centered artificial intelligence: Three fresh ideas. AIS Transactions on Human-Computer Interaction, 12(3), 109–124.

    Article  Google Scholar 

  • Toreini, E., Aitken, M., Coopamootoo, K., Elliott, K., Zelaya, C. G., & Van Moorsel, A. (2020, January). The relationship between trust in AI and trustworthy machine learning technologies. In Proceedings of the 2020 conference on fairness, accountability, and transparency (pp. 272–283).

    Google Scholar 

  • Vygotsky, L. S. (1978). Socio-cultural theory. Mind in Society, 6(3), 23–43.

    Google Scholar 

  • Webber, K. L. (2012). The use of learner-centered assessment in US colleges and universities. Research in Higher Education, 53(2), 201–228.

    Article  Google Scholar 

  • Xu, W. (2019). Toward human-centered AI: A perspective from human-computer interaction. Interactions, 26(4), 42–46.

    Article  Google Scholar 

  • Yang, S. J., Ogata, H., Matsui, T., & Chen, N. S. (2021). Human-centered artificial intelligence in education: Seeing the invisible through the visible. Computers and Education: Artificial Intelligence, 2, 100008.

    Google Scholar 

  • Zhang, H. T., Park, T. J., Islam, A. N., Tran, D. S., Manna, S., Wang, Q., et al. (2022). Reconfigurable perovskite nickelate electronics for artificial intelligence. Science, 375(6580), 533–539.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ng, D.T.K., Leung, J.K.L., Su, M.J., Yim, I.H.Y., Qiao, M.S., Chu, S.K.W. (2022). AI Literacy on Human-Centered Considerations. In: AI Literacy in K-16 Classrooms. Springer, Cham. https://doi.org/10.1007/978-3-031-18880-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18880-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18879-4

  • Online ISBN: 978-3-031-18880-0

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics