Abstract
Longitudinal medical image data are becoming increasingly important for monitoring patient progression. However, such datasets are often small, incomplete, or have inconsistencies between observations. Thus, we propose a generative model that not only produces continuous trajectories of fully synthetic patient images, but also imputes missing data in existing trajectories, by estimating realistic progression over time. Our generative model is trained directly on features extracted from images and maps these into a linear trajectory in a Euclidean space defined with velocity, delay, and spatial parameters that are learned directly from the data. We evaluated our method on toy data and face images, both showing simulated trajectories mimicking progression in longitudinal data. Furthermore, we applied the proposed model on a complex neuroimaging database extracted from ADNI. All datasets show that the model is able to learn overall (disease) progression over time.
C. Chadebec and E. M. C. Huijben—Equal contribution.
S. Allassonnière and M. A. J. M. van Eijnatten—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Code and dataset details are available at https://github.com/evihuijben/longVAE.
- 2.
Downloaded from https://doi.org/10.5281/zenodo.5081988.
- 3.
Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.
References
Aghili, M., Tabarestani, S., Adjouadi, M., Adeli, E.: Predictive modeling of longitudinal data for Alzheimer’s disease diagnosis using RNNs. In: Rekik, I., Unal, G., Adeli, E., Park, S.H. (eds.) PRIME 2018. LNCS, vol. 11121, pp. 112–119. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00320-3_14
Bi, L., Kim, J., Kumar, A., Feng, D., Fulham, M.: Synthesis of positron emission tomography (PET) images via multi-channel generative adversarial networks (GANs). In: Cardoso, M.J., et al. (eds.) CMMI/SWITCH/RAMBO 2017. LNCS, vol. 10555, pp. 43–51. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67564-0_5
Blackledge, M.D., et al.: Assessment of treatment response by total tumor volume and global apparent diffusion coefficient using diffusion-weighted MRI in patients with metastatic bone disease: a feasibility study. PLoS ONE 9(4), e91779 (2014)
Bône, A., Colliot, O., Durrleman, S.: Learning distributions of shape trajectories from longitudinal datasets: a hierarchical model on a manifold of diffeomorphisms. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9271–9280 (2018)
Calimeri, F., Marzullo, A., Stamile, C., Terracina, G.: Biomedical data augmentation using generative adversarial neural networks. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10614, pp. 626–634. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68612-7_71
Chadebec, C., Thibeau-Sutre, E., Burgos, N., Allassonnière, S.: Data augmentation in high dimensional low sample size setting using a geometry-based variational autoencoder. IEEE Trans. Pattern Anal. Mach. Intell. (2022)
Couronné, R., Vernhet, P., Durrleman, S.: Longitudinal self-supervision to disentangle inter-patient variability from disease progression. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 231–241. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_22
Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J., Greenspan, H.: GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 321, 321–331 (2018)
Ghosh, P., Sajjadi, M.S., Vergari, A., Black, M., Schölkopf, B.: From variational to deterministic autoencoders. In: International Conference on Learning Representations (ICLR) (2020)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)
Hussain, Z., Gimenez, F., Yi, D., Rubin, D.: Differential data augmentation techniques for medical imaging classification tasks. In: AMIA Annual Symposium Proceedings, vol. 2017, p. 979. American Medical Informatics Association (2017)
Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An introduction to variational methods for graphical models. In: Jordan, M.I. (ed.) Machine Learning. NATO ASI Series, pp. 105–161. Springer, Dordrecht (1998). https://doi.org/10.1007/978-94-011-5014-9_5
Kim, S.T., Küçükaslan, U., Navab, N.: Longitudinal brain MR image modeling using personalized memory for Alzheimer’s disease. IEEE Access 9, 143212–143221 (2021)
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)
Liu, X., Song, L., Liu, S., Zhang, Y.: A review of deep-learning-based medical image segmentation methods. Sustainability 13(3), 1224 (2021)
Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2015)
Louis, M., Couronné, R., Koval, I., Charlier, B., Durrleman, S.: Riemannian geometry learning for disease progression modelling. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 542–553. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_42
Madani, A., Moradi, M., Karargyris, A., Syeda-Mahmood, T.: Chest X-ray generation and data augmentation for cardiovascular abnormality classification. In: Medical Imaging 2018: Image Processing, vol. 10574, pp. 415–420. International Society for Optics and Photonics, SPIE (2018)
Nestor, S.M., et al.: Ventricular enlargement as a possible measure of Alzheimer’s disease progression validated using the Alzheimer’s disease neuroimaging initiative database. Brain 131(9), 2443–2454 (2008)
Ramchandran, S., Tikhonov, G., Kujanpää, K., Koskinen, M., Lähdesmäki, H.: Longitudinal variational autoencoder. In: Proceedings of The 24th International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 130, pp. 3898–3906. PMLR (2021)
Salehinejad, H., Valaee, S., Dowdell, T., Colak, E., Barfett, J.: Generalization of deep neural networks for chest pathology classification in X-rays using generative adversarial networks. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 990–994 (2018)
Sandfort, V., Yan, K., Pickhardt, P.J., Summers, R.M.: Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks. Sci. Rep. 9(1), 16884 (2019)
Shin, H.C., et al.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016)
Shin, H.-C., et al.: Medical image synthesis for data augmentation and anonymization using generative adversarial networks. In: Gooya, A., Goksel, O., Oguz, I., Burgos, N. (eds.) SASHIMI 2018. LNCS, vol. 11037, pp. 1–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00536-8_1
Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 60 (2019)
Wen, J., et al.: Convolutional neural networks for classification of Alzheimer’s disease: overview and reproducible evaluation. Med. Image Anal. 63, 101694 (2020)
Zhao, Q., Liu, Z., Adeli, E., Pohl, K.M.: Longitudinal self-supervised learning. Med. Image Anal. 71, 102051 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chadebec, C., Huijben, E.M.C., Pluim, J.P.W., Allassonnière, S., van Eijnatten, M.A.J.M. (2022). An Image Feature Mapping Model for Continuous Longitudinal Data Completion and Generation of Synthetic Patient Trajectories. In: Mukhopadhyay, A., Oksuz, I., Engelhardt, S., Zhu, D., Yuan, Y. (eds) Deep Generative Models. DGM4MICCAI 2022. Lecture Notes in Computer Science, vol 13609. Springer, Cham. https://doi.org/10.1007/978-3-031-18576-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-18576-2_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-18575-5
Online ISBN: 978-3-031-18576-2
eBook Packages: Computer ScienceComputer Science (R0)