Nothing Special   »   [go: up one dir, main page]

Skip to main content

Law Modeling for Fairness Requirements Elicitation in Artificial Intelligence Systems

  • Conference paper
  • First Online:
Conceptual Modeling (ER 2022)

Abstract

As Artificial Intelligence (AI) algorithms become widespread, concerns rise regarding their potential discrimination using protected attributes such as race, sex, or age among others. Fairness is a quality highly desired by society, however, it can be really difficult to achieve. Identifying protected attributes and trying to maintain fairness is both an important as well as a challenging task. In this paper, we propose a dynamic framework that considers the project context together with law modeling in order to identify protected attributes that threaten the fairness of AI models. This leads to a conscious evaluation of both the accuracy and fairness of the AI solutions developed. To this aim, we propose to model legal requirements by using Nòmos 3, which allows us to capture the legal requirements that should be fulfilled into legal contexts that can be loaded into our framework. By following our proposal we (i) map the duties in legal requirements to attributes in the used dataset, identifying protected attributes and providing traceability, (ii) help users in the selection of the definition of fairness that best suits the context at hand, (iii) represent the output of AI models visually in order to allow users to interpret how correct and fair are the decisions achieved by the model. To show the applicability of our proposal, we exemplify its application through a illustrative use case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Commission, E.: Ethics guidelines for trustworthy AI (2021). https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai

  2. Davenport, T., Guha, A., Grewal, D., Bressgott, T.: How artificial intelligence will change the future of marketing. J. Acad. Mark. Sci. 48(1), 24–42 (2019). https://doi.org/10.1007/s11747-019-00696-0

    Article  Google Scholar 

  3. Dorogush, A.V., Ershov, V., Gulin, A.: Catboost: gradient boosting with categorical features support. arXiv preprint arXiv:1810.11363 (2018)

  4. Došilović, F.K., Brčić, M., Hlupić, N.: Explainable artificial intelligence: a survey. In: 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 0210–0215. IEEE (2018)

    Google Scholar 

  5. Hofmann, H.: UCI Machine Learning Repository–Statlog (German Credit Data) (1994). https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29. Accessed 10 Apr 2022

  6. Ingolfo, S., Jureta, I., Siena, A., Perini, A., Susi, A.: Nòmos 3: legal compliance of roles and requirements. In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.) ER 2014. LNCS, vol. 8824, pp. 275–288. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12206-9_22

    Chapter  Google Scholar 

  7. Ingolfo, S., Siena, A., Mylopoulos, J.: Goals and compliance in nomos 3. In: iStar (2014). http://ceur-ws.org/Vol-1157/paper8.pdf

  8. Jefatura del Estado Español: Ley Orgánica 3/2007, de 22 de marzo, para la igualdad efectiva de mujeres y hombres (2007). https://www.boe.es/buscar/act.php?id=BOE-A-2007-6115. Accessed 10 Apr 2022

  9. Jiang, H., Nachum, O.: Identifying and correcting label bias in machine learning. In: International Conference on Artificial Intelligence and Statistics, pp. 702–712. PMLR (2020)

    Google Scholar 

  10. Lavalle, A., Maté, A., Trujillo, J.: An approach to automatically detect and visualize bias in data analytics. In: Proceedings of the 22nd International Workshop on Design, Optimization, Languages and Analytical Processing of Big Data, DOLAP@EDBT/ICDT 2020. CEUR Workshop Proceedings, vol. 2572, pp. 84–88. CEUR-WS.org (2020). http://ceur-ws.org/Vol-2572/short11.pdf

  11. Lavalle, A., Maté, A., Trujillo, J., García, J.: A methodology based on rebalancing techniques to measure and improve fairness in artificial intelligence algorithms. In: Proceedings of the 24nd International Workshop on Design, Optimization, Languages and Analytical Processing of Big Data DOLAP@EDBT/ICDT 2022. CEUR Workshop Proceedings, vol. 3130, pp. 81–85. CEUR-WS.org (2022). http://ceur-ws.org/Vol-3130/paper9.pdf

  12. Leavy, S.: Gender bias in artificial intelligence: the need for diversity and gender theory in machine learning. In: 2018 IEEE/ACM 1st International Workshop on Gender Equality in Software Engineering, GE@ICSE, pp. 14–16. ACM (2018). https://doi.org/10.1145/3195570.3195580

  13. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on bias and fairness in machine learning. ACM Comput. Surv. (CSUR) 54(6), 1–35 (2021). https://doi.org/10.1145/3457607

    Article  Google Scholar 

  14. Ntoutsi, E., et al.: Bias in data-driven artificial intelligence systems-an introductory survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 10(3), e1356 (2020). https://doi.org/10.1002/widm.1356

    Article  Google Scholar 

  15. Peng, K., Chakraborty, J., Menzies, T.: xFAIR: better fairness via model-based rebalancing of protected attributes. arXiv preprint arXiv:2110.01109 (2021)

  16. Tan, S., Caruana, R., Hooker, G., Lou, Y.: Detecting bias in black-box models using transparent model distillation. CoRR abs/1710.06169 (2017). http://arxiv.org/abs/1710.06169

  17. Verma, S., Rubin, J.: Fairness definitions explained. In: Proceedings of the International Workshop on Software Fairness, FairWare@ICSE, pp. 1–7. ACM (2018). https://doi.org/10.1145/3194770.3194776

Download references

Acknowledgements

This work has been co-funded by the AETHER-UA project (PID 2020-112540RB-C43), funded by Spanish Ministry of Science and Innovation. And the BALLADEER (PROMETEO/2021/088) project, funded by the Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital (Generalitat Valenciana).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Lavalle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lavalle, A., Maté, A., Trujillo, J., García-Carrasco, J. (2022). Law Modeling for Fairness Requirements Elicitation in Artificial Intelligence Systems. In: Ralyté, J., Chakravarthy, S., Mohania, M., Jeusfeld, M.A., Karlapalem, K. (eds) Conceptual Modeling. ER 2022. Lecture Notes in Computer Science, vol 13607. Springer, Cham. https://doi.org/10.1007/978-3-031-17995-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17995-2_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17994-5

  • Online ISBN: 978-3-031-17995-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics