Nothing Special   »   [go: up one dir, main page]

Skip to main content

Lifestyle Factors That Promote Brain Structural Resilience in Individuals with Genetic Risk Factors for Dementia

  • Conference paper
  • First Online:
Machine Learning in Clinical Neuroimaging (MLCN 2022)

Abstract

Structural brain changes are commonly detectable on MRI before the progressive loss of cognitive function that occurs in individuals with Alzheimer’s disease and related dementias (ADRD). Some proportion of ADRD risk may be modifiable through lifestyle. Certain lifestyle factors may be associated with slower brain atrophy rates, even for individuals at high genetic risk for dementia. Here, we evaluated 44,100 T1-weighted brain MRIs and detailed lifestyle reports from UK Biobank participants who had one or more genetic risk factors for ADRD, including family history of dementia, or one or two ApoE4 risk alleles. In this cross-sectional dataset, we use a machine-learning based metric of age predicted from cross-sectional brain MRIs - or ‘brain age’ - which when compared to the participant's chronological age, may be considered a proxy for abnormal brain aging and degree of atrophy. We used a 3D convolutional neural network trained on T1w brain MRIs to identify the subset of genetically high-risk individuals with a substantially lower brain age than chronological age, which we interpret as resilient to neurodegeneration. We used association rule learning to identify sets of lifestyle factors that were frequently associated with brain-age resiliency. Never or rarely adding salt to food was consistently associated with resiliency. Sex-stratified analyses showed that anthropometry measures and alcohol consumption contribute differently to male vs female resilience. These findings may shed light on distinctive risk profile modifications that can be made to mitigate accelerated aging and risk for ADRD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blennow, K., de Leon, M.J., Zetterberg, H.: Alzheimer's disease. Lancet (2006)

    Google Scholar 

  2. Medland, S.E., Jahanshad, N., Neale, B.M., Thompson, P.M.: Whole-genome analyses of whole-brain data: working within an expanded search space. Nat. Neurosci. 17, 791–800 (2014)

    Google Scholar 

  3. Loy, C.T., Schofield, P.R., Turner, A.M., Kwok, J.B.J.: Genetics of dementia. Lancet 383, 828–840 (2014)

    Article  Google Scholar 

  4. Lambert, J.C., Ibrahim-Verbaas, C.A., Harold, D., Naj, A.C., Sims, R., et al.: Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 45, 1452–1458 (2013)

    Article  Google Scholar 

  5. Strittmatter, W.J.: Medicine. Old drug, new hope for Alzheimer’s disease. Science 335(6075), 1447–1448 (2012)

    Google Scholar 

  6. Livingston, G., et al.: Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 396, 413–446 (2020)

    Google Scholar 

  7. Nianogo, R.A., Rosenwohl-Mack, A., Yaffe, K., Carrasco, A., Hoffmann, C.M., Barnes, D.E.: Risk factors associated with Alzheimer disease and related dementias by sex and race and ethnicity in the US. JAMA Neurol. 79, 584–591 (2022)

    Article  Google Scholar 

  8. Jack, C.R., Jr.: Alliance for aging research AD biomarkers work group: structural MRI. Neurobiol. Aging. 32(Suppl 1), S48-57 (2011)

    Article  Google Scholar 

  9. Cole, J.H., Franke, K.: Predicting age using neuroimaging: innovative brain ageing biomarkers. Trends Neurosci. 40, 681–690 (2017)

    Article  Google Scholar 

  10. Butler, E.R., Chen, A., Ramadan, R., Le, T.T., Ruparel, K., et al.: Pitfalls in brain age analyses. Hum. Brain Mapp. 42, 4092–4101 (2021)

    Article  Google Scholar 

  11. Cole, J.H., Poudel, R.P.K., Tsagkrasoulis, D., Caan, M.W.A., Steves, C., et al.: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. Neuroimage 163, 115–124 (2017)

    Article  Google Scholar 

  12. Steffener, J., Habeck, C., O’Shea, D., Razlighi, Q., Bherer, L., Stern, Y.: Differences between chronological and brain age are related to education and self-reported physical activity. Neurobiol. Aging. 40, 138–144 (2016)

    Article  Google Scholar 

  13. Smith, S.M., Vidaurre, D., Alfaro-Almagro, F., Nichols, T.E., Miller, K.L.: Estimation of brain age delta from brain imaging. Neuroimage 200, 528–539 (2019)

    Article  Google Scholar 

  14. Dunås, T., Wåhlin, A., Nyberg, L., Boraxbekk, C.-J.: Multimodal image analysis of apparent brain age identifies physical fitness as predictor of brain maintenance. Cereb. Cortex. 31, 3393–3407 (2021)

    Article  Google Scholar 

  15. Bittner, N., et al.: When your brain looks older than expected: combined lifestyle risk and BrainAGE. Brain Struct. Funct. 226(3), 621–645 (2021). https://doi.org/10.1007/s00429-020-02184-6

    Article  Google Scholar 

  16. Miller, K.L., Alfaro-Almagro, F., Bangerter, N.K., Thomas, D.L., Yacoub, E., et al.: Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 19, 1523–1536 (2016)

    Article  Google Scholar 

  17. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data - SIGMOD 1993. ACM Press, New York (1993)

    Google Scholar 

  18. Peng, H., Gong, W., Beckmann, C.F., Vedaldi, A., Smith, S.M.: Accurate brain age prediction with lightweight deep neural networks. Med. Image Anal. 68, 101871 (2021)

    Article  Google Scholar 

  19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization, http://arxiv.org/abs/1412.6980 (2014)

  20. Cole, J.H., Ritchie, S.J., Bastin, M.E., Valdés Hernández, M.C., Muñoz Maniega, S., et al.: Brain age predicts mortality. Mol. Psychiatry. 23, 1385–1392 (2018)

    Article  Google Scholar 

  21. de Lange, A.-M.G., Cole, J.H.: Commentary: correction procedures in brain-age prediction. Neuroimage Clin. 26 (2020)

    Google Scholar 

  22. Said, M.A., Verweij, N., van der Harst, P.: Associations of combined genetic and lifestyle risks with incident cardiovascular disease and diabetes in the UK Biobank study. JAMA Cardiol. 3, 693–702 (2018)

    Article  Google Scholar 

  23. Zhuang, P., Liu, X., Li, Y., Wan, X., Wu, Y., et al.: Effect of diet quality and genetic predisposition on hemoglobin A1c and Type 2 diabetes risk: gene-diet interaction analysis of 357,419 individuals. Diabetes Care 44, 2470–2479 (2021)

    Article  Google Scholar 

  24. Raschka, S.: MLxtend: providing machine learning and data science utilities and extensions to Python’s scientific computing stack. J. Open Source Softw. 3, 638 (2018)

    Article  Google Scholar 

  25. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to data mining. https://www-users.cse.umn.edu/~kumar001/dmbook/dmsol_11_07_2021.pdf. Accessed 8 July 2022

  26. Heye, A.K., et al.: Blood pressure and sodium: association with MRI markers in cerebral small vessel disease. J. Cereb. Blood Flow Metab. 36, 264–274 (2016)

    Google Scholar 

  27. Strazzullo, P., D’Elia, L., Kandala, N.-B., Cappuccio, F.P.: Salt intake, stroke, and cardiovascular disease: meta-analysis of prospective studies. BMJ 339, b4567 (2009)

    Article  Google Scholar 

  28. Santisteban, M.M., Iadecola, C.: Hypertension, dietary salt and cognitive impairment. J. Cereb. Blood Flow Metab. 38, 2112–2128 (2018)

    Article  Google Scholar 

  29. Moser, V.A., Pike, C.J.: Obesity and sex interact in the regulation of Alzheimer’s disease. Neurosci. Biobehav. Rev. 67, 102–118 (2016)

    Article  Google Scholar 

  30. Rocca, W.A., Mielke, M.M., Vemuri, P., Miller, V.M.: Sex and gender differences in the causes of dementia: a narrative review. Maturitas 79, 196–201 (2014)

    Article  Google Scholar 

  31. Podcasy, J.L., Epperson, C.N.: Considering sex and gender in Alzheimer disease and other dementias. Dialog. Clin. Neurosci. 18, 437–446 (2016)

    Article  Google Scholar 

  32. Udeh-Momoh, C., Watermeyer, T.: Female Brain Health and Endocrine Research (FEMBER) consortium: female specific risk factors for the development of Alzheimer’s disease neuropathology and cognitive impairment: call for a precision medicine approach. Ageing Res. Rev. 71, 101459 (2021)

    Article  Google Scholar 

  33. Bocancea, D.I., van Loenhoud, A.C., Groot, C., Barkhof, F., van der Flier, W.M., Ossenkoppele, R.: Measuring resilience and resistance in aging and Azheimer disease using residual methods: a systematic review and meta-analysis. Neurology 10 (2021)

    Google Scholar 

  34. Marmarelis, M.G., Ver Steeg, G., Jahanshad, N., Galstyan, A.: Bounding the effects of continuous treatments for hidden confounders (2022). http://arxiv.org/abs/2204.11206

Download references

Acknowledgments

This work was supported in part by: R01AG059874, U01AG068057, P41EB05922. This research has been conducted using the UK Biobank Resource under Application Number ‘11559’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neda Jahanshad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haddad, E. et al. (2022). Lifestyle Factors That Promote Brain Structural Resilience in Individuals with Genetic Risk Factors for Dementia. In: Abdulkadir, A., et al. Machine Learning in Clinical Neuroimaging. MLCN 2022. Lecture Notes in Computer Science, vol 13596. Springer, Cham. https://doi.org/10.1007/978-3-031-17899-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17899-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17898-6

  • Online ISBN: 978-3-031-17899-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics