Nothing Special   »   [go: up one dir, main page]

Skip to main content

On Modelling and Solving the Shortest Path Problem with Evidential Weights

  • Conference paper
  • First Online:
Belief Functions: Theory and Applications (BELIEF 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13506))

Included in the following conference series:

Abstract

We study the single source single destination shortest path problem in a graph where information about arc weights is modelled by a belief function. We consider three common criteria to compare paths with respect to their weights in this setting: generalized Hurwicz, strong dominance and weak dominance. We show that in the particular case where the focal sets of the belief function are Cartesian products of intervals, finding best, i.e., non-dominated, paths according to these criteria amounts to solving known variants of the deterministic shortest path problem, for which exact resolution algorithms exist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Byers, T.H., Waterman, M.S.: Determining all optimal and near-optimal solutions when solving shortest path problems by dynamic programming. Oper. Res. 32(6), 1381–1384 (1984)

    Article  MathSciNet  Google Scholar 

  2. Denoeux, T.: Decision-making with belief functions: a review. Int. J. Approx. Reason. 109, 87–110 (2019)

    Article  MathSciNet  Google Scholar 

  3. Dias, L.C., Clímaco, J.N.: Shortest path problems with partial information: models and algorithms for detecting dominance. Eur. J. Oper. Res. 121(1), 16–31 (2000)

    Article  MathSciNet  Google Scholar 

  4. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  5. Duque, D., Lozano, L., Medaglia, A.L.: An exact method for the biobjective shortest path problem for large-scale road networks. Eur. J. Oper. Res. 242(3), 788–797 (2015)

    Article  MathSciNet  Google Scholar 

  6. Guillaume, R., Kasperski, A., Zieliński, P.: Robust optimization with scenarios using random fuzzy sets. In: Proceedings of FUZZ-IEEE 2021, pp. 1–6. IEEE (2021)

    Google Scholar 

  7. Hansen, P.: Bicriterion path problems. In: Fandel, G., Gal, T. (eds.) Multiple Criteria Decision Making Theory and Application. Lecture Notes in Economics and Mathematical Systems, vol. 177, pp. 109–127. Springer, Berlin, Heidelberg (1980). https://doi.org/10.1007/978-3-642-48782-8_9

    Chapter  Google Scholar 

  8. Helal, N., Pichon, F., Porumbel, D., Mercier, D., Lefèvre, E.: The capacitated vehicle routing problem with evidential demands. Int. J. Approx. Reason. 95, 124–151 (2018)

    Article  MathSciNet  Google Scholar 

  9. Mihalák, M., Srámek, R., Widmayer, P.: Approximately counting approximately-shortest paths in directed acyclic graphs. Theory Comput. Syst. 58(1), 45–59 (2016)

    Article  MathSciNet  Google Scholar 

  10. Montemanni, R., Gambardella, L.M.: An exact algorithm for the robust shortest path problem with interval data. Comput. Oper. Res. 31(10), 1667–1680 (2004)

    Article  MathSciNet  Google Scholar 

  11. Nakharutai, N., Troffaes, M.C.M., Caiado, C.C.S.: Improving and benchmarking of algorithms for \(\gamma \)-maximin, \(\gamma \)-maximax and interval dominance. Int. J. Approx. Reason. 133, 95–115 (2021)

    Article  MathSciNet  Google Scholar 

  12. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    Book  Google Scholar 

  13. Shenoy, P.P.: An expectation operator for belief functions in the Dempster-Shafer theory. Int. J. Gen Syst 49(1), 112–141 (2020)

    Article  MathSciNet  Google Scholar 

  14. Tedjini, T., Afifi, S., Pichon, F., Lefèvre, E.: The vehicle routing problem with time windows and evidential service and travel times: a recourse model. In: Vejnarová, J., Wilson, N. (eds.) ECSQARU 2021. LNCS (LNAI), vol. 12897, pp. 381–395. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86772-0_28

    Chapter  MATH  Google Scholar 

  15. Yu, G., Yang, J.: On the robust shortest path problem. Comput. Oper. Res. 25(6), 457–468 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuan-Anh Vu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vu, TA., Afifi, S., Lefèvre, É., Pichon, F. (2022). On Modelling and Solving the Shortest Path Problem with Evidential Weights. In: Le Hégarat-Mascle, S., Bloch, I., Aldea, E. (eds) Belief Functions: Theory and Applications. BELIEF 2022. Lecture Notes in Computer Science(), vol 13506. Springer, Cham. https://doi.org/10.1007/978-3-031-17801-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17801-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17800-9

  • Online ISBN: 978-3-031-17801-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics