Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Distributional Approach for Soft Clustering Comparison and Evaluation

  • Conference paper
  • First Online:
Belief Functions: Theory and Applications (BELIEF 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13506))

Included in the following conference series:

Abstract

The development of external evaluation criteria for soft clustering (SC) has received limited attention: existing methods do not provide a general approach to extend comparison measures to SC, and are unable to account for the uncertainty represented in the results of SC algorithms. In this article, we propose a general method to address these limitations, grounding on a novel interpretation of SC as distributions over hard clusterings, which we call distributional measures. We provide an in-depth study of complexity- and metric-theoretic properties of the proposed approach, and we describe approximation techniques that can make the calculations tractable. Finally, we illustrate our approach through a simple but illustrative experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Due to space constraints, the complete version of all proofs appears online at https://arxiv.org/abs/2206.09827.

  2. 2.

    https://arxiv.org/abs/2206.09827.

  3. 3.

    The problem is trivially in P w.r.t. the distribution-based representation of \(R_1, R_2\).

  4. 4.

    https://arxiv.org/abs/2206.09827.

References

  1. Anderson, D.T., Bezdek, J.C., Popescu, M., et al.: Comparing fuzzy, probabilistic, and possibilistic partitions. IEEE Trans. Fuzzy Syst. 18(5), 906–918 (2010)

    Article  Google Scholar 

  2. Pattern Recognition with Fuzzy Objective Function Algorithms. AAPR, Springer, Boston (1981). https://doi.org/10.1007/978-1-4757-0450-1

  3. Campagner, A., Ciucci, D.: Orthopartitions and soft clustering: soft mutual information measures for clustering validation. Knowl. Based Syst. 180, 51–61 (2019)

    Article  Google Scholar 

  4. Campello, R.J.: A fuzzy extension of the rand index and other related indexes for clustering and classification assessment. Pattern Recognit. Lett. 28(7), 833–841 (2007)

    Article  Google Scholar 

  5. Day, W.H.: The complexity of computing metric distances between partitions. Math. Soc. Sci. 1(3), 269–287 (1981)

    Article  MathSciNet  Google Scholar 

  6. Denoeux, T.: Decision-making with belief functions: a review. Int. J. Approx. Reason. 109, 87–110 (2019)

    Article  MathSciNet  Google Scholar 

  7. Huynh, V.-N., Inuiguchi, M., Le, B., Le, B.N., Denoeux, T. (eds.): IUKM 2016. LNCS (LNAI), vol. 9978. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49046-5

  8. Denœux, T., Li, S., Sriboonchitta, S.: Evaluating and comparing soft partitions: an approach based on Dempster-Shafer theory. IEEE Trans. Fuzzy Syst. 26(3), 1231–1244 (2017)

    Article  Google Scholar 

  9. Denœux, T., Masson, M.H.: EVCLUS: evidential clustering of proximity data. IEEE Trans. Syst. Man Cybern. B Cybern. 34(1), 95–109 (2004)

    Google Scholar 

  10. Depaolini, M.R., Ciucci, D., Calegari, S., Dominoni, M.: External indices for rough clustering. In: Nguyen, H.S., Ha, Q.-T., Li, T., Przybyła-Kasperek, M. (eds.) IJCRS 2018. LNCS (LNAI), vol. 11103, pp. 378–391. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99368-3_29

    Chapter  Google Scholar 

  11. Frigui, H., Hwang, C., Rhee, F.C.H.: Clustering and aggregation of relational data with applications to image database categorization. Pattern Recognit. 40(11), 3053–3068 (2007)

    Article  Google Scholar 

  12. Hüllermeier, E., Rifqi, M., Henzgen, S., et al.: Comparing fuzzy partitions: a generalization of the rand index and related measures. IEEE Trans. Fuzzy Syst. 20(3), 546–556 (2011)

    Article  Google Scholar 

  13. Krishnapuram, R., Keller, J.M.: A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. 1(2), 98–110 (1993)

    Article  Google Scholar 

  14. Lingras, P., West, C.: Interval set clustering of web users with rough k-means. J Intell. Inform. Syst. 23(1), 5–16 (2004)

    Article  Google Scholar 

  15. Masson, M.H., Denoeux, T.: ECM: an evidential version of the fuzzy c-means algorithm. Pattern Recognit. 41(4), 1384–1397 (2008)

    Article  Google Scholar 

  16. Peters, G.: Rough clustering utilizing the principle of indifference. Inf. Sci. 277, 358–374 (2014)

    Article  MathSciNet  Google Scholar 

  17. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971)

    Article  Google Scholar 

  18. Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance. J. Mach. Learn. Res. 11, 2837–2854 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Xiong, H., Li, Z.: Clustering validation measures. In: Data Clustering, pp. 571–606. Chapman and Hall/CRC (2018)

    Google Scholar 

  20. Zhou, D., Li, J., Zha, H.: A new Mallows distance based metric for comparing clusterings. In: Proceeding of ICML 2005, pp. 1028–1035 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Campagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Campagner, A., Ciucci, D., Denœux, T. (2022). A Distributional Approach for Soft Clustering Comparison and Evaluation. In: Le Hégarat-Mascle, S., Bloch, I., Aldea, E. (eds) Belief Functions: Theory and Applications. BELIEF 2022. Lecture Notes in Computer Science(), vol 13506. Springer, Cham. https://doi.org/10.1007/978-3-031-17801-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17801-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17800-9

  • Online ISBN: 978-3-031-17801-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics