Abstract
Sensor devices collecting, storing, and processing data use index structures to improve query performance. Indexing approaches based on trees, hash and range partitioning, and space efficient summaries such as bitmap indexes have been proposed. The most efficient technique to use for a particular use case is often unknown, and there has been limited research comparing the different approaches to determine situations where each is the most effective. This work presents an experimental evaluation of the sequential binary index for time series (SBITS) versus tree and partition index structures. SBITS uses space-efficient bitmap indexes and sequential writes that results in significantly higher insert and query performance. It also has the ability to adapt the index structure to both the query requirements and data distribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Global Microcontroller Market Share, Industry Size, Application (Automotive Industry, Consumer Devices, and Industrial Sector), by Type (8 bit, 32 bit and 16 bit), 2021 By Radiant Insights, Inc. (2021)
Bender, M.A., et al.: An introduction to B\(\epsilon \)-trees and write-optimization. Usenix Mag. 40(5), 22–28 (2015). https://www.usenix.org/publications/login/oct15/bender
Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970)
Fazackerley, S., Ould-Khessal, N., Lawrence, R.: Efficient flash indexing for time series data on memory-constrained embedded sensor devices. In: Proceedings of the 10th International Conference on Sensor Networks, SENSORNETS 2021, pp. 92–99. SCITEPRESS (2021). https://doi.org/10.5220/0010318800920099
Feltham, A., Ould-Khessal, N., MacBeth, S., Fazackerley, S., Lawrence, R.: Linear hashing implementations for flash memory. In: Filipe, J., Śmiałek, M., Brodsky, A., Hammoudi, S. (eds.) ICEIS 2019. LNBIP, vol. 378, pp. 386–405. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40783-4_18
Ferragina, P., Vinciguerra, G.: The PGM-index: a fully-dynamic compressed learned index with provable worst-case bounds. Proc. VLDB Endow. 13(8), 1162–1175 (2020). https://doi.org/10.14778/3389133.3389135
Fevgas, A., Akritidis, L., Bozanis, P., Manolopoulos, Y.: Indexing in flash storage devices: a survey on challenges, current approaches, and future trends. VLDB J. 29(1), 273–311 (2019). https://doi.org/10.1007/s00778-019-00559-8
Hardock, S., Koch, A., Vinçon, T., Petrov, I.: IPA-IDX: in-place appends for B-tree indices. In: 15th International Workshop on Data Management, pp. 18:1–18:3. ACM (2019). https://doi.org/10.1145/3329785.3329929
Kim, B., Lee, D.: LSB-tree: a log-structured B-Tree index structure for NAND flash SSDs. Des. Autom. Embed. Syst. 19(1-2), 77–100 (2015). https://doi.org/10.1007/s10617-014-9139-4
Marcus, R., et al.: Benchmarking learned indexes. Proc. VLDB Endow. 14(1), 1–13 (2020). https://doi.org/10.14778/3421424.3421425
Mathur, G., Desnoyers, P., Chukiu, P., Ganesan, D., Shenoy, P.: Ultra-low power data storage for sensor networks. ACM Trans. Sens. Netw. 5(4), 1–34 (2009)
Na, G., Lee, S., Moon, B.: Dynamic in-page logging for B-tree index. IEEE Trans. Knowl. Data Eng. 24(7), 1231–1243 (2012). https://doi.org/10.1109/TKDE.2011.32
O’Neil, P.E., Cheng, E., Gawlick, D., O’Neil, E.J.: The log-structured merge-tree (LSM-tree). Acta Informatica 33(4), 351–385 (1996). https://doi.org/10.1007/s002360050048
Ould-Khessal, N., Fazackerley, S., Lawrence, R.: B-tree implementation for memory-constrained embedded systems. In: 19th International Conference on Embedded Systems, Cyber-Physical Systems, and Applications (ESCS). CSREA Press (2021)
Roh, H., Kim, S., Lee, D., Park, S.: AS B-tree: a study of an efficient B+-tree for SSDs. J. Inf. Sci. Eng. 30(1), 85–106 (2014)
Sezer, O.B., Dogdu, E., Ozbayoglu, A.M.: Context-aware computing, learning, and big data in internet of things: a survey. IEEE Internet Things J. 5(1), 1–27 (2018). https://doi.org/10.1109/JIOT.2017.2773600
Sinha, R.R., Winslett, M., Wu, K., Stockinger, K., Shoshani, A.: Adaptive bitmap indexes for space-constrained systems. In: 2008 IEEE 24th International Conference on Data Engineering, pp. 1418–1420. IEEE (2008). https://doi.org/10.1109/ICDE.2008.4497575
Tsiftes, N., Dunkels, A.: A database in every sensor. In: Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems, SenSys 2011, pp. 316–332. ACM (2011). https://doi.org/10.1145/2070942.2070974
Wu, C., Kuo, T., Chang, L.: An efficient B-tree layer implementation for flash-memory storage systems. ACM Trans. Embed. Comput. Syst. 6(3), 19 (2007). https://doi.org/10.1145/1275986.1275991
Wu, K., Otoo, E.J., Shoshani, A.: Optimizing bitmap indices with efficient compression. ACM Trans. Database Syst. 31(1), 1–38 (2006). https://doi.org/10.1145/1132863.1132864
Wu, K., Shoshani, A., Stockinger, K.: Analyses of multi-level and multi-component compressed bitmap indexes. ACM Trans. Database Syst. 35(1), 1–52 (2008). https://doi.org/10.1145/1670243.1670245
Yin, S., Pucheral, P.: PBFilter: a flash-based indexing scheme for embedded systems. Inf. Syst. 37(7), 634–653 (2012). https://doi.org/10.1016/j.is.2012.02.002
Zeinalipour-Yazti, D., Lin, S., Kalogeraki, V., Gunopulos, D., Najjar, W.: MicroHash: an efficient index structure for flash-based sensor devices. In: Proceedings of the FAST 2005 Conference on File and Storage Technologies, pp. 31–43. USENIX Association (2005)
Zhang, H., et al.: Succinct range filters. ACM Trans. Database Syst. 45(2), 5:1–5:31 (2020). https://doi.org/10.1145/3375660
Acknowledgment
The authors would like to thank NSERC for supporting this research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Ould-Khessal, N., Fazackerley, S., Lawrence, R. (2022). Performance Evaluation of Embedded Time Series Indexes Using Bitmaps, Partitioning, and Trees. In: Ahrens, A., Prasad, R.V., Benavente-Peces, C., Ansari, N. (eds) Sensor Networks. SENSORNETS SENSORNETS 2021 2020. Communications in Computer and Information Science, vol 1674. Springer, Cham. https://doi.org/10.1007/978-3-031-17718-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-17718-7_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-17717-0
Online ISBN: 978-3-031-17718-7
eBook Packages: Computer ScienceComputer Science (R0)