Nothing Special   »   [go: up one dir, main page]

Skip to main content

BIT-WOW at NLPCC-2022 Task5 Track1: Hierarchical Multi-label Classification via Label-Aware Graph Convolutional Network

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2022)

Abstract

This paper describes the system proposed by the BIT-WOW team for NLPCC2022 shared task in Task5 Track1. The track is about multi-label towards abstracts of academic papers in scientific domain, which includes hierarchical dependencies among 1,530 labels. In order to distinguish semantic information among hierarchical label structures, we propose the Label-aware Graph Convolutional Network (LaGCN), which uses Graph Convolutional Network to capture the label association through context-based label embedding. Besides, curriculum learning is applied for domain adaptation and to mitigate the impact of a large number of categories. The experiments show that: 1) LaGCN effectively models the category information and makes a considerable improvement in dealing with a large number of categories; 2) Curriculum learning is beneficial for a single model in the complex task. Our best results were obtained by an ensemble model. According to the official results, our approach proved the best in this track.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/huggingface/transformers.

References

  1. Zhou, J., et al.: Hierarchy-aware global model for hierarchical text classification. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 1106–1117. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.acl-main.104

  2. Liu, M., et al.: Overview of the NLPCC 2022 shared task 5 track 1: multi-label classification model for English scientific literature (2022)

    Google Scholar 

  3. Zhang, Y., David, P., Foroosh, H., Gong, B.: A curriculum domain adaptation approach to the semantic segmentation of urban scenes. IEEE Trans. Pattern Anal. Mach. Intell. 42(8), 1823–1841 (2020). https://doi.org/10.1109/TPAMI.2019.2903401

    Article  Google Scholar 

  4. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 4171–4186. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/n19-1423

  5. Lee, J., et al.: BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 36(4), 1234–1240 (2020). https://doi.org/10.1093/bioinformatics/btz682

    Article  Google Scholar 

  6. Bengio, S., Weston, J., Grangier, D.: Label embedding trees for large multi-class tasks. In: Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010, pp. 163–171. Curran Associates, Inc. (2010)

    Google Scholar 

  7. Ma, Y., Cambria, E., Gao, S.: Label embedding for zero-shot fine-grained named entity typing. In: Proceedings of the Conference on International Conference on Computational Linguistics: Technical Papers, pp. 171–180. ACL (2016). https://aclanthology.org/C16-1017/

  8. Liu, X., Huang, H., Shi, G., Wang, B.: Dynamic prefix-tuning for generative template-based event extraction. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, pp. 5216–5228. Association for Computational Linguistics (2022). https://aclanthology.org/2022.acl-long.358

  9. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: 5th International Conference on Learning Representations. OpenReview.net (2017). https://openreview.net/forum?id=SJU4ayYgl

  10. Kumar, M.P., Packer, B., Koller, D.: Self-paced learning for latent variable models. In: Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010, Vancouver, British Columbia, Canada, 6–9 December 2010, pp. 1189–1197. Curran Associates, Inc. (2010)

    Google Scholar 

  11. Liu, X., et al.: BIT-event at NLPCC-2021 task 3: subevent identification via adversarial training. In: Wang, L., Feng, Y., Hong, Yu., He, R. (eds.) NLPCC 2021. LNCS (LNAI), vol. 13029, pp. 400–411. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88483-3_32

    Chapter  Google Scholar 

  12. Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: methods and applications. IEEE Data Eng. Bull. 40(3), 52–74 (2017). http://sites.computer.org/debull/A17sept/p52.pdf

  13. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.S.: Gated graph sequence neural networks. In: 4th International Conference on Learning Representations (2016). http://arxiv.org/abs/1511.05493

  14. Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, pp. 1024–1034 (2017)

    Google Scholar 

  15. Liu, X., Huang, H., Zhang, Y.: Open domain event extraction using neural latent variable models. In: Proceedings of the 57th Conference of the Association for Computational Linguistics, pp. 2860–2871. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/p19-1276

  16. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 1263–1272. PMLR (2017). http://proceedings.mlr.press/v70/gilmer17a.html

  17. Liu, X., Huang, H., Zhang, Y.: End-to-end event factuality prediction using directional labeled graph recurrent network. Inf. Process. Manag. 59(2), 102836 (2022). https://doi.org/10.1016/j.ipm.2021.102836

    Article  Google Scholar 

  18. Liu, X., Luo, Z., Huang, H.: Jointly multiple events extraction via attention-based graph information aggregation. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 1247–1256. Association for Computational Linguistics (2018). https://doi.org/10.18653/v1/d18-1156

  19. Banerjee, S., Akkaya, C., Perez-Sorrosal, F., Tsioutsiouliklis, K.: Hierarchical transfer learning for multi-label text classification. In: Proceedings of the 57th Conference of the Association for Computational Linguistics, pp. 6295–6300. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/p19-1633

  20. Peng, H., et al.: Large-scale hierarchical text classification with recursively regularized deep graph-CNN. In: Proceedings of the 2018 World Wide Web Conference on World Wide Web, pp. 1063–1072. ACM (2018). https://doi.org/10.1145/3178876.3186005

  21. Dumais, S.T., Chen, H.: Hierarchical classification of web content. In: Proceedings of the 23rd Annual International Conference on Research and Development in Information Retrieval, pp. 256–263. ACM (2000). https://doi.org/10.1145/345508.345593

  22. Kowsari, K., et al.: HDLTex: hierarchical deep learning for text classification. In: 16th International Conference on Machine Learning and Applications, pp. 364–371. IEEE (2017). https://doi.org/10.1109/ICMLA.2017.0-134

  23. Cerri, R., Barros, R.C., de Carvalho, A.C.P.L.F.: Hierarchical multi-label classification using local neural networks. J. Comput. Syst. Sci. 80(1), 39–56 (2014). https://doi.org/10.1016/j.jcss.2013.03.007

  24. Gopal, S., Yang, Y.: Recursive regularization for large-scale classification with hierarchical and graphical dependencies. In: The 19th International Conference on Knowledge Discovery and Data Mining, pp. 257–265. ACM (2013). https://doi.org/10.1145/2487575.2487644

  25. Naik, A., Rangwala, H.: HierFlat: flattened hierarchies for improving top-down hierarchical classification. Int. J. Data Sci. Anal. 4(3), 191–208 (2017). https://doi.org/10.1007/s41060-017-0070-1

    Article  Google Scholar 

  26. Wehrmann, J., Cerri, R., Barros, R.C.: Hierarchical multi-label classification networks. In: Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 5225–5234. PMLR (2018). http://proceedings.mlr.press/v80/wehrmann18a.html

  27. Amigó, E., Delgado, A.D.: Evaluating extreme hierarchical multi-label classification. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5809–5819. Association for Computational Linguistics (2022). https://aclanthology.org/2022.acl-long.399

  28. Xu, L., et al.: Hierarchical multi-label text classification with horizontal and vertical category correlations. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 2459–2468. Association for Computational Linguistics (2021). https://doi.org/10.18653/v1/2021.emnlp-main.190

  29. Zhang, H., Xiao, L., Chen, W., Wang, Y., Jin, Y.: Multi-task label embedding for text classification. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 4545–4553. Association for Computational Linguistics (2018). https://aclanthology.org/D18-1484/

  30. Du, C., Chen, Z., Feng, F., Zhu, L., Gan, T., Nie, L.: Explicit interaction model towards text classification. In: The 33rd Conference on Artificial Intelligence, The 31st Innovative Applications of Artificial Intelligence Conference, The 9th Symposium on Educational Advances in Artificial Intelligence, pp. 6359–6366. AAAI Press (2019). https://doi.org/10.1609/aaai.v33i01.33016359

Download references

Acknowledgement

This work was supported by the Joint Funds of the National Natural Science Foundation of China (Grant No. U19B2020). We would like to thank the anonymous reviewers for their thoughtful and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heyan huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, B. et al. (2022). BIT-WOW at NLPCC-2022 Task5 Track1: Hierarchical Multi-label Classification via Label-Aware Graph Convolutional Network. In: Lu, W., Huang, S., Hong, Y., Zhou, X. (eds) Natural Language Processing and Chinese Computing. NLPCC 2022. Lecture Notes in Computer Science(), vol 13552. Springer, Cham. https://doi.org/10.1007/978-3-031-17189-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17189-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17188-8

  • Online ISBN: 978-3-031-17189-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics