Nothing Special   »   [go: up one dir, main page]

Skip to main content

SecureBiNN: 3-Party Secure Computation for Binarized Neural Network Inference

  • Conference paper
  • First Online:
Computer Security – ESORICS 2022 (ESORICS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13556))

Included in the following conference series:

Abstract

The paper proposes SecureBiNN, a novel three-party secure computation framework for evaluating privacy-preserving binarized neural network (BiNN) in semi-honest adversary setting. In SecureBiNN, three participants hold input data and model parameters in secret sharing form, and execute secure computations to obtain secret shares of prediction result without disclosing their input data, model parameters and the prediction result. SecureBiNN performs linear operations in a computation-efficient and communication-free way. For non-linear operations, we provide novel secure methods for evaluating activation function, maxpooling layers, and batch normalization layers in BiNN. Communication overhead is significantly minimized comparing to previous work like XONN and Falcon. We implement SecureBiNN with tensorflow and the experiments show that using the Fitnet structure, SecureBiNN achieves on CIFAR-10 dataset an accuracy of 81.5%, with communication cost of 16.609MB and runtime of 0.527s/3.447s in the LAN/WAN settings. More evaluations on real-world datasets are also performed and other concrete comparisons with state-of-the-art are presented as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/Wixee/SecureBiNN.

  2. 2.

    OT protocols in ABY\(^3\) and Falcon are secure against semi-honest adversaries.

  3. 3.

    Same for convolutional layers.

  4. 4.

    The maxpooling operation comes on the heels of the activation layer, and can be achieved by changing the final output of the activation layer as in Algorithm 6.

References

  1. Breast cancer wisconsin (diagnostic) data set (1995). Accessed 25 Apr 2022. https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29

  2. Indian liver patient records (2013). Accessed 25 Apr 2022. https://archive.ics.uci.edu/ml/datasets/liver+disorders

  3. Malaria cell images dataset (2019). Accessed 25 Apr 2022. https://www.kaggle.com/datasets/iarunava/cell-images-for-detecting-malaria

  4. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: Keeton, K., Roscoe, T. (eds.) 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016, Savannah, GA, USA, 2–4 November 2016, pp. 265–283. USENIX Association (2016). https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi

  5. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-honest secure three-party computation with an honest majority. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016, pp. 805–817. ACM (2016). https://doi.org/10.1145/2976749.2978331

  6. Beaver, D.: One-time tables for two-party computation. In: Hsu, W.-L., Kao, M.-Y. (eds.) COCOON 1998. LNCS, vol. 1449, pp. 361–370. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-68535-9_40

    Chapter  Google Scholar 

  7. Boemer, F., Costache, A., Cammarota, R., Wierzynski, C.: ngraph-he2: a high-throughput framework for neural network inference on encrypted data. In: Brenner, M., Lepoint, T., Rohloff, K. (eds.) Proceedings of the 7th ACM Workshop on Encrypted Computing & Applied Homomorphic Cryptography, WAHC@CCS 2019, London, UK, 11–15 November 2019, pp. 45–56. ACM (2019). https://doi.org/10.1145/3338469.3358944

  8. Bourse, F., Minelli, M., Minihold, M., Paillier, P.: Fast homomorphic evaluation of deep discretized neural networks. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 483–512. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_17

    Chapter  Google Scholar 

  9. Canetti, R.: Universally composable security. J. ACM 67(5) (2020). https://doi.org/10.1145/3402457

  10. Chandran, N., Gupta, D., Rastogi, A., Sharma, R., Tripathi, S.: Ezpc: programmable and efficient secure two-party computation for machine learning. In: IEEE European Symposium on Security and Privacy, EuroS &P 2019, Stockholm, Sweden, 17–19 June 2019, pp. 496–511. IEEE (2019). https://doi.org/10.1109/EuroSP.2019.00043

  11. Chen, X., Liu, C., Li, B., Lu, K., Song, D.: Targeted backdoor attacks on deep learning systems using data poisoning. CoRR abs/1712.05526 (2017). https://arxiv.org/abs/1712.05526

  12. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_15

    Chapter  Google Scholar 

  13. Demmler, D., Schneider, T., Zohner, M.: ABY - a framework for efficient mixed-protocol secure two-party computation. In: 22nd Annual Network and Distributed System Security Symposium, NDSS 2015, San Diego, California, USA, 8–11 February 2015. The Internet Society (2015). https://www.ndss-symposium.org/ndss2015/aby--framework-efficient-mixed-protocol-secure-two-party-computation

  14. Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure three-party computation for malicious adversaries and an honest majority. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 225–255. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_8

    Chapter  Google Scholar 

  15. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K.E., Naehrig, M., Wernsing, J.: Cryptonets: applying neural networks to encrypted data with high throughput and accuracy. In: Balcan, M., Weinberger, K.Q. (eds.) Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, 19–24 June 2016. JMLR Workshop and Conference Proceedings, vol. 48, pp. 201–210. JMLR.org (2016). https://proceedings.mlr.press/v48/gilad-bachrach16.html

  16. Ibarrondo, A., Chabanne, H., Önen, M.: Banners: binarized neural networks with replicated secret sharing. In: Borghys, D., Bas, P., Verdoliva, L., Pevný, T., Li, B., Newman, J. (eds.) IH &MMSec 2021: ACM Workshop on Information Hiding and Multimedia Security, Virtual Event, Belgium, 22–25 June 2021, pp. 63–74. ACM (2021). https://doi.org/10.1145/3437880.3460394

  17. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Bach, F.R., Blei, D.M. (eds.) Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6–11 July 2015, JMLR Workshop and Conference Proceedings, vol. 37, pp. 448–456. JMLR.org (2015). https://proceedings.mlr.press/v37/ioffe15.html

  18. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: a low latency framework for secure neural network inference. In: Enck, W., Felt, A.P. (eds.) 27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA, 15–17 August 2018, pp. 1651–1669. USENIX Association (2018). https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar

  19. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Handb. Systemic Autoimmune Dis. 1(4) (2009)

    Google Scholar 

  20. Lecun, Y., Bottou, L.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  21. Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network predictions via minionn transformations. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA, 30 October–03 November 2017, pp. 619–631. ACM (2017). https://doi.org/10.1145/3133956.3134056

  22. Mishra, P., Lehmkuhl, R., Srinivasan, A., Zheng, W., Popa, R.A.: Delphi: a cryptographic inference system for neural networks. In: Zhang, B., Popa, R.A., Zaharia, M., Gu, G., Ji, S. (eds.) PPMLP 2020: Proceedings of the 2020 Workshop on Privacy-Preserving Machine Learning in Practice, Virtual Event, USA, November 2020, pp. 27–30. ACM (2020). https://doi.org/10.1145/3411501.3419418

  23. Mohassel, P., Zhang, Y.: Secureml: a system for scalable privacy-preserving machine learning. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 19–38 (2017). https://doi.org/10.1109/SP.2017.12

  24. Mohassel, P., Rindal, P.: Aby\({}^{\text{3}}\): a mixed protocol framework for machine learning. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS 2018, Toronto, ON, Canada, 15–19 October 2018, pp. 35–52. ACM (2018). https://doi.org/10.1145/3243734.3243760

  25. Ohata, S., Nuida, K.: Communication-efficient (client-aided) secure two-party protocols and its application. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 369–385. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51280-4_20

    Chapter  MATH  Google Scholar 

  26. Patra, A., Schneider, T., Suresh, A., Yalame, H.: ABY2.0: improved mixed-protocol secure two-party computation. In: Bailey, M., Greenstadt, R. (eds.) 30th USENIX Security Symposium, USENIX Security 2021, 11–13 August 2021, pp. 2165–2182. USENIX Association (2021). https://www.usenix.org/conference/usenixsecurity21/presentation/patra

  27. Rathee, D., et al.: Cryptflow2: practical 2-party secure inference. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) CCS 2020: 2020 ACM SIGSAC Conference on Computer and Communications Security, Virtual Event, USA, 9–13 November 2020, pp. 325–342. ACM (2020). https://doi.org/10.1145/3372297.3417274

  28. Riazi, M.S., Samragh, M., Chen, H., Laine, K., Lauter, K.E., Koushanfar, F.: XONN: xnor-based oblivious deep neural network inference. In: Heninger, N., Traynor, P. (eds.) 28th USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA, USA, 14–16 August 2019, pp. 1501–1518. USENIX Association (2019). https://www.usenix.org/conference/usenixsecurity19/presentation/riazi

  29. Riazi, M.S., Weinert, C., Tkachenko, O., Songhori, E.M., Schneider, T., Koushanfar, F.: Chameleon: a hybrid secure computation framework for machine learning applications. In: Proceedings of the 2018 on Asia Conference on Computer and Communications Security, ASIACCS 2018, pp. 707–721. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3196494.3196522

  30. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: Fitnets: hints for thin deep nets. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015). https://arxiv.org/abs/1412.6550

  31. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks against machine learning models. In: 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, 22–26 May 2017, pp. 3–18. IEEE Computer Society (2017). https://doi.org/10.1109/SP.2017.41

  32. Smith, J., Everhart, J., Dickson, W., Knowler, W., Johannes, R.: Using the adap learning algorithm to forcast the onset of diabetes mellitus. In: Proceedings - Annual Symposium on Computer Applications in Medical Care, vol. 10 (1988)

    Google Scholar 

  33. Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing machine learning models via prediction apis. In: Holz, T., Savage, S. (eds.) 25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, 10–12 August 2016, pp. 601–618. USENIX Association (2016). https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/tramer

  34. Wagh, S., Gupta, D., Chandran, N.: Securenn: 3-party secure computation for neural network training. Proc. Priv. Enhanc. Technol. 2019(3), 26–49 (2019). https://doi.org/10.2478/popets-2019-0035

    Article  Google Scholar 

  35. Wagh, S., Tople, S., Benhamouda, F., Kushilevitz, E., Mittal, P., Rabin, T.: Falcon: Honest-majority maliciously secure framework for private deep learning. Proc. Priv. Enhanc. Technol. 2021(1), 188–208 (2021). https://doi.org/10.2478/popets-2021-0011

    Article  Google Scholar 

  36. van der Walt, S., Colbert, S.C., Varoquaux, G.: The numpy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13(2), 22–30 (2011). https://doi.org/10.1109/MCSE.2011.37

    Article  Google Scholar 

Download references

Acknowledgement

The work is supported by the National Natural Science Foundation of China (Grant No. 61971192), Shanghai Municipal Education Commission (2021-01-07-00-08-E00101), and Shanghai Trusted Industry Internet Software Collaborative Innovation Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangxue Li .

Editor information

Editors and Affiliations

A Related Work

A Related Work

The privacy-preserving neural network inference technology is mainly divided into two routes, one is based on HE, and another on SMC.

In the former route, one commonly used HE algorithm is CKKS [12], a computation-expensive leveled-FHE scheme with multiplication depth being kept within certain range. In 2016, Nathan et al. propose Cryptonets [12] using the CKKS algorithm. Since CKKS can only support addition and multiply operations, it is difficult to implement the Sigmoid or the ReLU activation functions, and only the square function can be used which makes low model accuracy.

A representative example in SMC-based route goes to SecureML [23] which uses Beaver’s Triplet [6] to realize multiplication. As it requires numerous multiplication triples, SecureML supports limited practicability. Subsequent schemes (e.g., ABY [13]) significantly reduce the running time and communication cost. Other frameworks including BiNN inference framework XONN [28] mainly rely on GC. Some 3PC frameworks (e.g., ABY3 [24] and Falcon [35]) use replicated secret sharing [14]. Therein, three parties can directly perform privacy-preserving multiplications locally according to the input to obtain the output and no interaction is required. Thus, these 3PC frameworks are generally more efficient and faster than those 2PC frameworks, an advantage meeting actual needs.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, W., Wei, M., Li, X., Li, Q. (2022). SecureBiNN: 3-Party Secure Computation for Binarized Neural Network Inference. In: Atluri, V., Di Pietro, R., Jensen, C.D., Meng, W. (eds) Computer Security – ESORICS 2022. ESORICS 2022. Lecture Notes in Computer Science, vol 13556. Springer, Cham. https://doi.org/10.1007/978-3-031-17143-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17143-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17142-0

  • Online ISBN: 978-3-031-17143-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics