Abstract
The field of computational pathology has witnessed great advancements since deep neural networks have been widely applied. These networks usually require large numbers of annotated data to train vast parameters. However, it takes significant effort to annotate a large histo-pathology dataset. We introduce a light-weight and interpretable model for nuclei detection and weakly-supervised segmentation. It only requires annotations on isolated nucleus, rather than on all nuclei in the dataset. Besides, it is a generative compositional model that first locates parts of nucleus, then learns the spatial correlation of the parts to further locate the nucleus. This process brings interpretability in its prediction. Empirical results on an in-house dataset show that in detection, the proposed method achieved comparable or better performance than its deep network counterparts, especially when the annotated data is limited. It also outperforms popular weakly-supervised segmentation methods. The proposed method could be an alternative solution for the data-hungry problem of deep learning methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alom, M.Z., Yakopcic, C., Taha, T.M., Asari, V.K.: Microscopic nuclei classification, segmentation and detection with improved Deep Convolutional Neural Network (DCNN) approaches (2018)
Arteta, C., Lempitsky, V., Noble, J.A., Zisserman, A.: Learning to detect cells using non-overlapping extremal regions. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7510, pp. 348–356. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33415-3_43
Baykal, E., Dogan, H., Ercin, M.E., Ersoz, S., Ekinci, M.: Modern convolutional object detectors for nuclei detection on pleural effusion cytology images. Multimed. Tools App. 79(21-22), 15417–15436 (2020). https://doi.org/10.1007/s11042-019-7461-3
Du, J., Li, X., Li, Q.: Detection and classification of cervical exfoliated cells based on faster R-CNN. In: 2019 IEEE 11th International Conference on Advanced Infocomm Technology, ICAIT 2019 (2019). https://doi.org/10.1109/ICAIT.2019.8935931
Graham, S., et al.: Hover-Net: simultaneous segmentation and classification of nuclei in multi-tissue histology images. Med. Image Anal. 58, 101563 (2019)
Guo, R., Pagnucco, M., Song, Y.: Learning with noise: mask-guided attention model for weakly supervised nuclei segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 461–470. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_43
Hagos, Y.B., Narayanan, P.L., Akarca, A.U., Marafioti, T., Yuan, Y.: ConCORDe-Net: cell count regularized convolutional neural network for cell detection in multiplex immunohistochemistry images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 667–675. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_74
Höfener, H., Homeyer, A., Weiss, N., Molin, J., Lundström, C.F., Hahn, H.K.: Deep learning nuclei detection: a simple approach can deliver state-of-the-art results. Computerized Medical Imaging and Graphics 70, 43–52 (2018). https://www.sciencedirect.com/science/article/pii/S0895611118300806
Hsu, C.C., Hsu, K.J., Tsai, C.C., Lin, Y.Y., Chuang, Y.Y.: Weakly supervised instance segmentation using the bounding box tightness prior. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Kashif, M.N., Raza, S.E., Sirinukunwattana, K., Arif, M., Rajpoot, N.: Handcrafted features with convolutional neural networks for detection of tumor cells in histology images. In: Proceedings - International Symposium on Biomedical Imaging. vol. 2016-June (2016)
Kortylewski, A., Liu, Q., Wang, A., Sun, Y., Yuille, A.: Compositional convolutional neural networks: a robust and interpretable model for object recognition under occlusion. Int. J. Comput. Vis. 129(3), 736–760 (2021)
Kumar, N., Verma, R., Sharma, S., Bhargava, S., Vahadane, A., Sethi, A.: A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Trans. Med. Imaging 36(7), 1550–1560 (2017)
Kuse, M., Wang, Y.F., Kalasannavar, V., Khan, M., Rajpoot, N.: Local isotropic phase symmetry measure for detection of beta cells and lymphocytes. J. Pathol. Inform. 2, 2 (2011)
Lee, H., Jeong, W.-K.: Scribble2Label: scribble-supervised cell segmentation via self-generating pseudo-labels with consistency. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 14–23. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_2
Lu, S., et al.: Comparison of biomarker modalities for predicting response to PD-1/PD-L1 checkpoint blockade: a systematic review and meta-analysis. JAMA Oncol. 5(8), 1195–1204 (2019)
Naylor, P., Lae, M., Reyal, F., Walter, T.: Nuclei segmentation in histopathology images using deep neural networks. In: Proceedings - International Symposium on Biomedical Imaging (2017)
Qu, H., et al.: Weakly supervised deep nuclei segmentation using partial points annotation in histopathology images. IEEE Trans. Med. Imaging 39(11), 3655–3666 (2020)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)
Ren, Z., Yuan, J., Li, C., Liu, W.: Minimum near-convex decomposition for robust shape representation. In: Proceedings of the IEEE International Conference on Computer Vision (2011)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Sirinukunwattana, K., Ahmed Raza, S.E., Tsang, Y.-W., Snead, D., Cree, I., Rajpoot, N.: A spatially constrained deep learning framework for detection of epithelial tumor nuclei in cancer histology images. In: Wu, G., Coupé, P., Zhan, Y., Munsell, B., Rueckert, D. (eds.) Patch-MI 2015. LNCS, vol. 9467, pp. 154–162. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28194-0_19
Sirinukunwattana, K., Raza, S.E., Tsang, Y.W., Snead, D.R., Cree, I.A., Rajpoot, N.M.: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging 35(5), 1196–1206 (2016)
Tofighi, M., Guo, T., Vanamala, J.K., Monga, V.: Deep networks with shape priors for nucleus detection. In: Proceedings - International Conference on Image Processing, ICIP (2018)
Veta, M., Van Diest, P.J., Kornegoor, R., Huisman, A., Viergever, M.A., Pluim, J.P.: Automatic nuclei segmentation in h &e stained breast cancer histopathology images. PloS ONE 8(7), e70221 (2013)
Wang, A., Sun, Y., Kortylewski, A., Yuille, A.: Robust object detection under occlusion with context-aware compositionalNets. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2020)
Xie, Y., Xing, F., Kong, X., Su, H., Yang, L.: Beyond classification: structured regression for robust cell detection using convolutional neural network. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 358–365. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_43
Xie, Y., Xing, F., Shi, X., Kong, X., Su, H., Yang, L.: Efficient and robust cell detection: a structured regression approach. Med. Image Anal. 44, 245–254 (2018)
Xu, J., Xiang, L., Liu, Q., Gilmore, H., Wu, J., Tang, J., Madabhushi, A.: Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Trans. Med. Imaging 35(1), 119–130 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, Y. et al. (2022). A Light-Weight Interpretable Model for Nuclei Detection and Weakly-Supervised Segmentation. In: Huo, Y., Millis, B.A., Zhou, Y., Wang, X., Harrison, A.P., Xu, Z. (eds) Medical Optical Imaging and Virtual Microscopy Image Analysis. MOVI 2022. Lecture Notes in Computer Science, vol 13578. Springer, Cham. https://doi.org/10.1007/978-3-031-16961-8_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-16961-8_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16960-1
Online ISBN: 978-3-031-16961-8
eBook Packages: Computer ScienceComputer Science (R0)