Nothing Special   »   [go: up one dir, main page]

Skip to main content

Trichomonas Vaginalis Segmentation in Microscope Images

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13434))

Abstract

Trichomoniasis is a common infectious disease with high incidence caused by the parasite Trichomonas vaginalis, increasing the risk of getting HIV in humans if left untreated. Automated detection of Trichomonas vaginalis from microscopic images can provide vital information for diagnosis of trichomoniasis. However, accurate Trichomonas vaginalis segmentation (TVS) is a challenging task due to the high appearance similarity between the Trichomonas and other cells (e.g., leukocyte), the large appearance variation caused by their motility, and, most importantly, the lack of large-scale annotated data for deep model training. To address these challenges, we elaborately collected the first large-scale Microscopic Image dataset of Trichomonas Vaginalis, named TVMI3K, which consists of 3,158 images covering Trichomonas of various appearances in diverse backgrounds, with high-quality annotations including object-level mask labels, object boundaries, and challenging attributes. Besides, we propose a simple yet effective baseline, termed TVNet, to automatically segment Trichomonas from microscopic images, including high-resolution fusion and foreground-background attention modules. Extensive experiments demonstrate that our model achieves superior segmentation performance and outperforms various cutting-edge object detection models both quantitatively and qualitatively, making it a promising framework to promote future research in TVS tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brandao, P., Mazomenos, E., Ciuti, G., Caliò, R., Bianchi, F., Menciassi, A., et al.: Fully convolutional neural networks for polyp segmentation in colonoscopy. In: Medical Imaging: Computer-Aided Diagnosis. vol. 10134, pp. 101–107 (2017)

    Google Scholar 

  2. Chen, L., et al.: SCA-CNN: spatial and channel-wise attention in convolutional networks for image captioning. In: IEEE CVPR, pp. 5659–5667 (2017)

    Google Scholar 

  3. Fan, D.P., Cheng, M.M., Liu, Y., Li, T., Borji, A.: Structure-measure: a new way to evaluate foreground maps. In: IEEE ICCV, pp. 4548–4557 (2017)

    Google Scholar 

  4. Fan, D.P., Gong, C., Cao, Y., Ren, B., Cheng, M.M., Borji, A.: Enhanced-alignment measure for binary foreground map evaluation. In: IJCAI. pp. 698–704 (2018)

    Google Scholar 

  5. Fan, D.P., Ji, G.P., Cheng, M.M., Shao, L.: Concealed object detection. IEEE TPAMI, pp. 1 (2021)

    Google Scholar 

  6. Fan, D.P., Ji, G.P., Sun, G., Cheng, M.M., Shen, J., Shao, L.: Camouflaged object detection. In: IEEE CVPR, pp. 2777–2787 (2020)

    Google Scholar 

  7. Fan, D.P., et al.: Pranet: parallel reverse attention network for polyp segmentation. In: MICCAI, pp. 263–273 (2020)

    Google Scholar 

  8. Fan, D.P., Zhou, T., Ji, G.P., Zhou, Y., Chen, G., Fu, H., Shen, J., Shao, L.: INF-NET: Automatic covid-19 lung infection segmentation from CT images. IEEE TMI 39(8), 2626–2637 (2020)

    Google Scholar 

  9. Gao, S.H., Cheng, M.M., Zhao, K., Zhang, X.Y., Yang, M.H., Torr, P.: Res2net: A new multi-scale backbone architecture. IEEE TPAMI 43(2), 652–662 (2019)

    Article  Google Scholar 

  10. Harp, D.F., Chowdhury, I.: Trichomoniasis: evaluation to execution. Eur. J. Obstet. Gynecol. Reprod. Biol. 157(1), 3–9 (2011)

    Article  Google Scholar 

  11. Havaei, M., Davy, A., Warde-Farley, D., Biard, A., et al.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)

    Article  Google Scholar 

  12. Hesamian, M.H., Jia, W., He, X., Kennedy, P.: Deep learning techniques for medical image segmentation: achievements and challenges. J. Digit. Imaging 32(4), 582–596 (2019)

    Article  Google Scholar 

  13. Huang, H., Lin, L., Tong, R., Hu, H., Zhang, Q., Iwamoto, Y., Han, X., Chen, Y.W., Wu, J.: Unet 3+: A full-scale connected unet for medical image segmentation. In: ICASSP. pp. 1055–1059 (2020)

    Google Scholar 

  14. Ji, G.-P., Chou, Y.-C., Fan, D.-P., Chen, G., Fu, H., Jha, D., Shao, L.: Progressively normalized self-attention network for video polyp segmentation. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. Progressively normalized self-attention network for video polyp segmentation, vol. 12901, pp. 142–152. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_14

    Chapter  Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  16. Li, D., et al.: Robust blood cell image segmentation method based on neural ordinary differential equations. In: Computational and Mathematical Methods in Medicine 2021 (2021)

    Google Scholar 

  17. Li, J., et al.: A systematic collection of medical image datasets for deep learning. arXiv preprint arXiv:2106.12864 (2021)

  18. Li, L., Liu, J., Yu, F., Wang, X., Xiang, T.Z.: Mvdi25k: A large-scale dataset of microscopic vaginal discharge images. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1(1), 100008 (2021)

    Article  Google Scholar 

  19. Liu, J., Dong, B., Wang, S., Cui, H., Fan, D.P., Ma, J., Chen, G.: Covid-19 lung infection segmentation with a novel two-stage cross-domain transfer learning framework. Med. Image Anal. 74, 102205 (2021)

    Article  Google Scholar 

  20. Margolin, R., Zelnik-Manor, L., Tal, A.: How to evaluate foreground maps? In: IEEE CVPR. pp. 248–255 (2014)

    Google Scholar 

  21. Perazzi, F., Krähenbühl, P., Pritch, Y., Hornung, A.: Saliency filters: contrast based filtering for salient region detection. In: IEEE CVPR, pp. 733–740. IEEE (2012)

    Google Scholar 

  22. Qin, X., Zhang, Z., Huang, C., Dehghan, M., et al.: U2-net: going deeper with nested u-structure for salient object detection. Pattern Recogn. 106, 107404 (2020)

    Article  Google Scholar 

  23. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. U-net: Convolutional networks for biomedical image segmentation, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  24. Siddique, N., Paheding, S., Elkin, C.P., Devabhaktuni, V.: U-net and its variants for medical image segmentation: a review of theory and applications. IEEE Access, pp. 82031–82057 (2021)

    Google Scholar 

  25. Sun, P., Zhang, W., Wang, H., Li, S., Li, X.: Deep RGB-D saliency detection with depth-sensitive attention and automatic multi-modal fusion. In: IEEE CVPR, pp. 1407–1417 (2021)

    Google Scholar 

  26. Tang, W., Zou, D., Yang, S., Shi, J., Dan, J., Song, G.: A two-stage approach for automatic liver segmentation with faster R-CNN and deeplab. Neural Comput. Appl. 32(11), 6769–6778 (2020)

    Article  Google Scholar 

  27. Vos, T., Allen, C., Arora, M., Barber, R.M., Bhutta, Z.A., Brown, A., et al.: Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the global burden of disease study 2015. The Lancet 388(10053), 1545–1602 (2016)

    Article  Google Scholar 

  28. Wang, X., Du, X., Liu, L., Ni, G., Zhang, J., Liu, J., Liu, Y.: Trichomonas vaginalis detection using two convolutional neural networks with encoder-decoder architecture. Appl. Sci. 11(6), 2738 (2021)

    Article  Google Scholar 

  29. Wei, J., Hu, Y., Zhang, R., Li, Z., Zhou, S.K., Cui, S.: Shallow attention network for polyp segmentation. In: MICCAI. pp. 699–708 (2021)

    Google Scholar 

  30. Wei, J., Wang, S., Huang, Q.: F\(^3\)net: fusion, feedback and focus for salient object detection. In: AAAI, pp. 12321–12328 (2020)

    Google Scholar 

  31. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: Cbam: Convolutional block attention module. In: ECCV. pp. 3–19 (2018)

    Google Scholar 

  32. Workowski, K.A.: Sexually transmitted infections and HIV: diagnosis and treatment. Topics Antiviral Med. 20(1), 11 (2012)

    Google Scholar 

  33. Wu, Z., Su, L., Huang, Q.: Cascaded partial decoder for fast and accurate salient object detection. In: IEEE CVPR, pp. 3907–3916 (2019)

    Google Scholar 

  34. Wu, Z., Su, L., Huang, Q.: Stacked cross refinement network for edge-aware salient object detection. In: IEEE ICCV, pp. 7263–7272 (2019)

    Google Scholar 

  35. Zhang, Y., et al.: A multi-branch hybrid transformer network for corneal endothelial cell segmentation. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 99–108. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_10

    Chapter  Google Scholar 

  36. Zhao, X., Wu, Y., Song, G., Li, Z., et al.: A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. Med. Image Anal. 43, 98–111 (2018)

    Article  Google Scholar 

  37. Zhao, X., Zhang, L., Lu, H.: Automatic polyp segmentation via multi-scale subtraction network. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 120–130. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_12

    Chapter  Google Scholar 

  38. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: Unet++: a nested u-net architecture for medical image segmentation. In: DLMIA, pp. 3–11 (2018)

    Google Scholar 

  39. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: Unet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE TMI, pp. 1856–1867 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xunkun Wang or Tian-Zhu Xiang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 962 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, L., Liu, J., Wang, S., Wang, X., Xiang, TZ. (2022). Trichomonas Vaginalis Segmentation in Microscope Images. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13434. Springer, Cham. https://doi.org/10.1007/978-3-031-16440-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16440-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16439-2

  • Online ISBN: 978-3-031-16440-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics