Nothing Special   »   [go: up one dir, main page]

Skip to main content

Accurate and Robust Lesion RECIST Diameter Prediction and Segmentation with Transformers

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13434))

Abstract

Automatically measuring lesion/tumor size with RECIST (Response Evaluation Criteria In Solid Tumors) diameters and segmentation is important for computer-aided diagnosis. Although it has been studied in recent years, there is still space to improve its accuracy and robustness, such as (1) enhancing features by incorporating rich contextual information while keeping a high spatial resolution and (2) involving new tasks and losses for joint optimization. To reach this goal, this paper proposes a transformer-based network (MeaFormer, Measurement transFormer) for lesion RECIST diameter prediction and segmentation (LRDPS). It is formulated as three correlative and complementary tasks: lesion segmentation, heatmap prediction, and keypoint regression. To the best of our knowledge, it is the first time to use keypoint regression for RECIST diameter prediction. MeaFormer can enhance high-resolution features by employing transformers to capture their long-range dependencies. Two consistency losses are introduced to explicitly build relationships among these tasks for better optimization. Experiments show that MeaFormer achieves the state-of-the-art performance of LRDPS on the large-scale DeepLesion dataset and produces promising results of two downstream clinic-relevant tasks, i.e., 3D lesion segmentation and RECIST assessment in longitudinal studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://nihcc.app.box.com/v/DeepLesion.

  2. 2.

    https://github.com/JimmyCai91/DLT.

References

  1. Bretschi, M., et al.: Assessing treatment response of osteolytic lesions by manual volumetry, automatic segmentation, and RECIST in experimental bone metastases. Acad. Radiol. 21(9), 1177–1184 (2014)

    Article  Google Scholar 

  2. Cai, J., et al.: Accurate weakly-supervised deep lesion segmentation using large-scale clinical annotations: slice-propagated 3D mask generation from 2D RECIST. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 396–404. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_46

    Chapter  Google Scholar 

  3. Cai, J., et al.: Deep lesion tracker: Monitoring lesions in 4d longitudinal imaging studies. In: CVPR, pp. 15159–15169 (2021)

    Google Scholar 

  4. Cao, H., et al.: Swin-unet: unet-like pure transformer for medical image segmentation. arXiv preprint arXiv:2105.05537 (2021)

  5. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Li, F.: Imagenet: a large-scale hierarchical image database. In: CVPR, pp. 248–255 (2009)

    Google Scholar 

  7. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  8. Eisenhauer, E.A., et al.: New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45(2), 228–247 (2009)

    Google Scholar 

  9. Isensee, F., et al.: nnU-net: self-adapting framework for u-net-based medical image segmentation. arXiv preprint arXiv:1809.10486 (2018)

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  11. Li, S., Sui, X., Luo, X., Xu, X., Liu, Y., Goh, R.S.M.: Medical image segmentation using squeeze-and-expansion transformers. In: IJCAI, pp. 807–815 (2021)

    Google Scholar 

  12. Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning library. In: NeurIPS, pp. 8024–8035 (2019)

    Google Scholar 

  13. Rahman, M.A., Wang, Y.: Optimizing intersection-over-union in deep neural networks for image segmentation. In: Bebis, G., et al. (eds.) ISVC 2016. LNCS, vol. 10072, pp. 234–244. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50835-1_22

    Chapter  Google Scholar 

  14. Rothe, J.H., et al.: Size determination and response assessment of liver metastases with computed tomography-comparison of RECIST and volumetric algorithms. Eur. J. Radiol. 82(11), 1831–1839 (2013)

    Article  Google Scholar 

  15. Tang, Y., et al.: Weakly-supervised universal lesion segmentation with regional level set loss. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 515–525. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_48

    Chapter  Google Scholar 

  16. Tang, Y., Harrison, A.P., Bagheri, M., Xiao, J., Summers, R.M.: Semi-automatic RECIST labeling on CT scans with cascaded convolutional neural networks. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 405–413. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_47

    Chapter  Google Scholar 

  17. Tang, Y., et al.: Lesion segmentation and RECIST diameter prediction via click-driven attention and dual-path connection. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 341–351. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_32

    Chapter  Google Scholar 

  18. Tang, Y., Yan, K., Xiao, J., Summers, R.M.: One click lesion RECIST measurement and segmentation on CT scans. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 573–583. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_56

    Chapter  Google Scholar 

  19. Vaswani, A., et al.: Attention is all you need. NeurIPS 30 (2017)

    Google Scholar 

  20. Wang, J., et al.: Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 10(2020), 3349–3364 (2020)

    Google Scholar 

  21. Yan, K., Wang, X., Lu, L., Summers, R.M.: DeepLesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning. J. Med. Imaging 5(3), 036501 (2018)

    Google Scholar 

  22. Yoon, S.H., Kim, K.W., Goo, J.M., Kim, D.W., Hahn, S.: Observer variability in recist-based tumour burden measurements: a meta-analysis. Eur. J. Cancer 53, 5–15 (2016)

    Article  Google Scholar 

  23. Zhang, Y., Liu, H., Hu, Q.: TransFuse: fusing transformers and CNNs for medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 14–24. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_2

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youbao Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, Y. et al. (2022). Accurate and Robust Lesion RECIST Diameter Prediction and Segmentation with Transformers. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13434. Springer, Cham. https://doi.org/10.1007/978-3-031-16440-8_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16440-8_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16439-2

  • Online ISBN: 978-3-031-16440-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics