Nothing Special   »   [go: up one dir, main page]

Skip to main content

Delving into Local Features for Open-Set Domain Adaptation in Fundus Image Analysis

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13437))

Abstract

Unsupervised domain adaptation (UDA) has received significant attention in medical image analysis when labels are only available for the source domain data but not for the target domain. Previous UDA methods mainly focused on the closed-set scenario, assuming that only the domain distribution shifts across domains while the label space is the same. However, in practice of medical imaging, the disease categories of training data in source domain are usually limited, and the open-world target domain data may have many unknown classes private to the source domain. Thus, open-set domain adaptation (OSDA) has great potential in this area. In this paper, we explore the OSDA problem by delving into local features for fundus disease recognition. We propose a collaborative regional clustering and alignment method to identify the common local feature patterns which are category-agnostic. Then, a cluster-aware contrastive adaptation loss is introduced to adapt the distributions based on the common local features. We also construct the first fundus image benchmark for OSDA to evaluate our methods and carry out extensive experiments for comparison. It shows that our model achieves consistent improvements over the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. International competition on ocular disease intelligent recognition (2019). https://odir2019.grand-challenge.org

  2. Tencent miying artificial intelligence competition for medical imaging (2021). https://contest.taop.qq.com/

  3. Bucci, S., Loghmani, M.R., Tommasi, T.: On the effectiveness of image rotation for open set domain adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 422–438. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_25

    Chapter  Google Scholar 

  4. Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Synergistic image and feature adaptation: towards cross-modality domain adaptation for medical image segmentation. In: AAAI, vol. 33, pp. 865–872 (2019)

    Google Scholar 

  5. Dou, Q., et al.: PnP-AdaNet: plug-and-play adversarial domain adaptation network at unpaired cross-modality cardiac segmentation. IEEE Access 7, 99065–99076 (2019)

    Article  Google Scholar 

  6. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1) (2016). ISSN 2096-2030

    Google Scholar 

  7. Guan, H., Liu, M.: Domain adaptation for medical image analysis: a survey. arXiv preprint arXiv:2102.09508 (2021)

  8. Gulshan, V., et al.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22), 2402–2410 (2016)

    Article  Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778. IEEE (2016)

    Google Scholar 

  10. He, X., Zhou, Y., Wang, B., Cui, S., Shao, L.: DME-Net: diabetic macular edema grading by auxiliary task learning. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 788–796. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_87

    Chapter  Google Scholar 

  11. Javanmardi, M., Tasdizen, T.: Domain adaptation for biomedical image segmentation using adversarial training. In: ISBI, pp. 554–558. IEEE (2018)

    Google Scholar 

  12. Jing, T., Liu, H., Ding, Z.: Towards novel target discovery through open-set domain adaptation. In: ICCV, pp. 9322–9331. IEEE (2021)

    Google Scholar 

  13. Kamnitsas, K., et al.: Unsupervised domain adaptation in brain lesion segmentation with adversarial networks. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 597–609. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_47

    Chapter  Google Scholar 

  14. Kang, G., Jiang, L., Yang, Y., Hauptmann, A.G.: Contrastive adaptation network for unsupervised domain adaptation. In: CVPR, pp. 4893–4902. IEEE (2019)

    Google Scholar 

  15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NeurIPS, vol. 25 (2012)

    Google Scholar 

  16. Li, G., Kang, G., Zhu, Y., Wei, Y., Yang, Y.: Domain consensus clustering for universal domain adaptation. In: CVPR, pp. 9757–9766. IEEE (2021)

    Google Scholar 

  17. Li, T., et al.: Applications of deep learning in fundus images: a review. Med. Image Anal. 69, 101971 (2021)

    Article  Google Scholar 

  18. Liu, H., Cao, Z., Long, M., Wang, J., Yang, Q.: Separate to adapt: open set domain adaptation via progressive separation. In: CVPR, pp. 2927–2936. IEEE (2019)

    Google Scholar 

  19. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  20. Pachade, S., et al.: Retinal fundus multi-disease image dataset (RFMID): a dataset for multi-disease detection research. Data 6(2), 14 (2021)

    Article  Google Scholar 

  21. Pan, Y., Yao, T., Li, Y., Ngo, C.W., Mei, T.: Exploring category-agnostic clusters for open-set domain adaptation. In: CVPR, pp. 13867–13875. IEEE (2020)

    Google Scholar 

  22. Panareda Busto, P., Gall, J.: Open set domain adaptation. In: ICCV, pp. 754–763. IEEE (2017)

    Google Scholar 

  23. Saito, K., Yamamoto, S., Ushiku, Y., Harada, T.: Open set domain adaptation by backpropagation. In: ECCV, pp. 153–168 (2018)

    Google Scholar 

  24. Shen, Y., et al.: Domain-invariant interpretable fundus image quality assessment. Med. Image Anal. 61, 101654 (2020)

    Article  Google Scholar 

  25. Shermin, T., Lu, G., Teng, S.W., Murshed, M., Sohel, F.: Adversarial network with multiple classifiers for open set domain adaptation. IEEE Trans. Multimedia 23, 2732–2744 (2020)

    Article  Google Scholar 

  26. Yang, J., Dvornek, N.C., Zhang, F., Chapiro, J., Lin, M.D., Duncan, J.S.: Unsupervised domain adaptation via disentangled representations: application to cross-modality liver segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 255–263. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_29

    Chapter  Google Scholar 

  27. You, K., Long, M., Cao, Z., Wang, J., Jordan, M.I.: Universal domain adaptation. In: CVPR, pp. 2720–2729 (2019)

    Google Scholar 

  28. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: CVPR, pp. 2921–2929. IEEE (2016)

    Google Scholar 

  29. Zhou, Y., et al.: Collaborative learning of semi-supervised segmentation and classification for medical images. In: CVPR, pp. 2079–2088. IEEE (2019)

    Google Scholar 

  30. Zhou, Y., Wang, B., Huang, L., Cui, S., Shao, L.: A benchmark for studying diabetic retinopathy: segmentation, grading, and transferability. IEEE Trans. Med. Imaging 40(3), 818–828 (2020)

    Article  Google Scholar 

Download references

Acknowledgement

This work was partially supported by the National Natural Science Foundation of China (Grants No 62106043), the Natural Science Foundation of Jiangsu Province (Grants No BK20210225), and the AME Programmatic Fund (A20H4b0141).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, Y., Bai, S., Zhou, T., Zhang, Y., Fu, H. (2022). Delving into Local Features for Open-Set Domain Adaptation in Fundus Image Analysis. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13437. Springer, Cham. https://doi.org/10.1007/978-3-031-16449-1_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16449-1_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16448-4

  • Online ISBN: 978-3-031-16449-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics