Abstract
Unsupervised domain adaptation (UDA) has received significant attention in medical image analysis when labels are only available for the source domain data but not for the target domain. Previous UDA methods mainly focused on the closed-set scenario, assuming that only the domain distribution shifts across domains while the label space is the same. However, in practice of medical imaging, the disease categories of training data in source domain are usually limited, and the open-world target domain data may have many unknown classes private to the source domain. Thus, open-set domain adaptation (OSDA) has great potential in this area. In this paper, we explore the OSDA problem by delving into local features for fundus disease recognition. We propose a collaborative regional clustering and alignment method to identify the common local feature patterns which are category-agnostic. Then, a cluster-aware contrastive adaptation loss is introduced to adapt the distributions based on the common local features. We also construct the first fundus image benchmark for OSDA to evaluate our methods and carry out extensive experiments for comparison. It shows that our model achieves consistent improvements over the state-of-the-art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
International competition on ocular disease intelligent recognition (2019). https://odir2019.grand-challenge.org
Tencent miying artificial intelligence competition for medical imaging (2021). https://contest.taop.qq.com/
Bucci, S., Loghmani, M.R., Tommasi, T.: On the effectiveness of image rotation for open set domain adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 422–438. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_25
Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Synergistic image and feature adaptation: towards cross-modality domain adaptation for medical image segmentation. In: AAAI, vol. 33, pp. 865–872 (2019)
Dou, Q., et al.: PnP-AdaNet: plug-and-play adversarial domain adaptation network at unpaired cross-modality cardiac segmentation. IEEE Access 7, 99065–99076 (2019)
Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1) (2016). ISSN 2096-2030
Guan, H., Liu, M.: Domain adaptation for medical image analysis: a survey. arXiv preprint arXiv:2102.09508 (2021)
Gulshan, V., et al.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22), 2402–2410 (2016)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778. IEEE (2016)
He, X., Zhou, Y., Wang, B., Cui, S., Shao, L.: DME-Net: diabetic macular edema grading by auxiliary task learning. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 788–796. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_87
Javanmardi, M., Tasdizen, T.: Domain adaptation for biomedical image segmentation using adversarial training. In: ISBI, pp. 554–558. IEEE (2018)
Jing, T., Liu, H., Ding, Z.: Towards novel target discovery through open-set domain adaptation. In: ICCV, pp. 9322–9331. IEEE (2021)
Kamnitsas, K., et al.: Unsupervised domain adaptation in brain lesion segmentation with adversarial networks. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 597–609. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_47
Kang, G., Jiang, L., Yang, Y., Hauptmann, A.G.: Contrastive adaptation network for unsupervised domain adaptation. In: CVPR, pp. 4893–4902. IEEE (2019)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NeurIPS, vol. 25 (2012)
Li, G., Kang, G., Zhu, Y., Wei, Y., Yang, Y.: Domain consensus clustering for universal domain adaptation. In: CVPR, pp. 9757–9766. IEEE (2021)
Li, T., et al.: Applications of deep learning in fundus images: a review. Med. Image Anal. 69, 101971 (2021)
Liu, H., Cao, Z., Long, M., Wang, J., Yang, Q.: Separate to adapt: open set domain adaptation via progressive separation. In: CVPR, pp. 2927–2936. IEEE (2019)
Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)
Pachade, S., et al.: Retinal fundus multi-disease image dataset (RFMID): a dataset for multi-disease detection research. Data 6(2), 14 (2021)
Pan, Y., Yao, T., Li, Y., Ngo, C.W., Mei, T.: Exploring category-agnostic clusters for open-set domain adaptation. In: CVPR, pp. 13867–13875. IEEE (2020)
Panareda Busto, P., Gall, J.: Open set domain adaptation. In: ICCV, pp. 754–763. IEEE (2017)
Saito, K., Yamamoto, S., Ushiku, Y., Harada, T.: Open set domain adaptation by backpropagation. In: ECCV, pp. 153–168 (2018)
Shen, Y., et al.: Domain-invariant interpretable fundus image quality assessment. Med. Image Anal. 61, 101654 (2020)
Shermin, T., Lu, G., Teng, S.W., Murshed, M., Sohel, F.: Adversarial network with multiple classifiers for open set domain adaptation. IEEE Trans. Multimedia 23, 2732–2744 (2020)
Yang, J., Dvornek, N.C., Zhang, F., Chapiro, J., Lin, M.D., Duncan, J.S.: Unsupervised domain adaptation via disentangled representations: application to cross-modality liver segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 255–263. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_29
You, K., Long, M., Cao, Z., Wang, J., Jordan, M.I.: Universal domain adaptation. In: CVPR, pp. 2720–2729 (2019)
Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: CVPR, pp. 2921–2929. IEEE (2016)
Zhou, Y., et al.: Collaborative learning of semi-supervised segmentation and classification for medical images. In: CVPR, pp. 2079–2088. IEEE (2019)
Zhou, Y., Wang, B., Huang, L., Cui, S., Shao, L.: A benchmark for studying diabetic retinopathy: segmentation, grading, and transferability. IEEE Trans. Med. Imaging 40(3), 818–828 (2020)
Acknowledgement
This work was partially supported by the National Natural Science Foundation of China (Grants No 62106043), the Natural Science Foundation of Jiangsu Province (Grants No BK20210225), and the AME Programmatic Fund (A20H4b0141).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhou, Y., Bai, S., Zhou, T., Zhang, Y., Fu, H. (2022). Delving into Local Features for Open-Set Domain Adaptation in Fundus Image Analysis. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13437. Springer, Cham. https://doi.org/10.1007/978-3-031-16449-1_65
Download citation
DOI: https://doi.org/10.1007/978-3-031-16449-1_65
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16448-4
Online ISBN: 978-3-031-16449-1
eBook Packages: Computer ScienceComputer Science (R0)