Abstract
This paper presents a novel algorithm named Direct Simultaneous Registration (DSR) that registers a collection of 3D images in a simultaneous fashion without specifying any reference image, feature extraction and matching, or information loss or reuse. The algorithm optimizes the global poses of local image frames by maximizing the similarity between a predefined panoramic image and local images. Although we formulate the problem as a Direct Bundle Adjustment (DBA) that jointly optimizes the poses of local frames and the intensities of the panoramic image, by investigating the independence of pose estimation from the panoramic image in the solving process, DSR is proposed to solve the poses only and proved to be able to obtain the same optimal poses as DBA. The proposed method is particularly suitable for the scenarios where distinct features are not available, such as Transesophageal Echocardiography (TEE) images. DSR is evaluated by comparing it with four widely used methods via simulated and in-vivo 3D TEE images. It is shown that the proposed method outperforms these four methods in terms of accuracy and requires much fewer computational resources than the state-of-the-art accumulated pairwise estimates (APE). Codes of DSR are available at https://github.com/ZH-Mao/DSR.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alismail, H., Browning, B., Lucey, S.: Photometric bundle adjustment for vision-based SLAM. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10114, pp. 324–341. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54190-7_20
Carminati, M.C., et al.: Reconstruction of the descending thoracic aorta by multiview compounding of 3-d transesophageal echocardiographic aortic data sets for improved examination and quantification of atheroma burden. Ultrasound Med. Biol. 41(5), 1263–1276 (2015)
Cox, M., Sridharan, S., Lucey, S., Cohn, J.: Least-squares congealing for large numbers of images. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1949–1956. IEEE (2009)
Fan, Y., et al.: Device sizing guided by echocardiography-based three-dimensional printing is associated with superior outcome after percutaneous left atrial appendage occlusion. J. Am. Soc. Echocardiogr. 32(6), 708–719 (2019)
Fenster, A., Downey, D.B., Cardinal, H.N.: Three-dimensional ultrasound imaging. Phys. Med. Biol. 46(5), R67 (2001)
Hall, B.C.: Lie Groups, Lie Algebras, and Representations. GTM, vol. 222. Springer, Cham ( 2015). https://doi.org/10.1007/978-3-319-13467-3
Hill, D.L., Batchelor, P.G., Holden, M., Hawkes, D.J.: Medical image registration. Phys. Med. Biol. 46(3), R1 (2001)
Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g2o: a general framework for graph optimization. In: 2011 IEEE International Conference on Robotics and Automation, pp. 3607–3613. IEEE (2011)
Learned-Miller, E.G.: Data driven image models through continuous joint alignment. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 236–250 (2005)
Loizou, C.P.: Comparative evaluation of despeckle filtering in ultrasound imaging of the carotid artery. IEEE Trans. Ultrason. Ferroelect. Freq. Control 52(10), 1653–1669 (2005)
Mao, Z., Zhao, L., Huang, S., Fan, Y., Lee, A.P.W.: Direct 3d ultrasound fusion for transesophageal echocardiography. Comput. Biol. Med. 134, 104502 (2021)
Morais, P., et al.: Semiautomatic estimation of device size for left atrial appendage occlusion in 3-d tee images. IEEE Trans. Ultrason. Ferroelect. Freq. Control 66(5), 922–929 (2019)
Ni, D., et al.: Reconstruction of volumetric ultrasound panorama based on improved 3d sift. Comput. Med. Imaging Graph. 33(7), 559–566 (2009)
Oliveira, F.P., Tavares, J.M.R.: Medical image registration: a review. Comput. Methods Biomech. Biomed. Eng. 17(2), 73–93 (2014)
Schneider, R.J., et al.: Real-time image-based rigid registration of three-dimensional ultrasound. Med. Image Anal. 16(2), 402–414 (2012)
Szeliski, R.: Image alignment and stitching a tutorial. Found. Trends ® Comput. Graph. Vision. 2(1), 1–104 (2006)
Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment–a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) IWVA 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44480-7_21
Viergever, M.A., Maintz, J.A., Klein, S., Murphy, K., Staring, M., Pluim, J.P.: A survey of medical image registration - under review. Med. Image Anal. 33, 140–144 (2016)
Wachinger, C., Navab, N.: Structural image representation for image registration. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, pp. 23–30. IEEE (2010)
Wachinger, C., Navab, N.: Simultaneous registration of multiple images: similarity metrics and efficient optimization. IEEE Trans. Pattern Anal. Mach. Intell. 35(5), 1221–1233 (2012)
Wachinger, C., Wein, W., Navab, N.: Three-dimensional ultrasound mosaicing. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. LNCS, vol. 4792, pp. 327–335. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75759-7_40
Wu, C., Agarwal, S., Curless, B., Seitz, S.M.: Multicore bundle adjustment. In: CVPR 2011, pp. 3057–3064. IEEE (2011)
Zhang, F.: The Schur complement and its applications, vol. 4. Springer, New York (2006). https://doi.org/10.1007/b105056
Zhang, J., Cheng, Y.: Despeckling Methods for Medical Ultrasound Images. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0516-4
Zhao, L., Huang, S., Sun, Y., Yan, L., Dissanayake, G.: Parallaxba: bundle adjustment using parallax angle feature parametrization. Int. J. Robot. Res. 34(4–5), 493–516 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 2 (mp4 10394 KB)
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mao, Z., Zhao, L., Huang, S., Fan, Y., Lee, A.P.W. (2022). DSR: Direct Simultaneous Registration for Multiple 3D Images. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13436. Springer, Cham. https://doi.org/10.1007/978-3-031-16446-0_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-16446-0_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16445-3
Online ISBN: 978-3-031-16446-0
eBook Packages: Computer ScienceComputer Science (R0)