Nothing Special   »   [go: up one dir, main page]

Skip to main content

Progression Models for Imaging Data with Longitudinal Variational Auto Encoders

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13431))

  • 8860 Accesses

Abstract

Disease progression models are crucial to understanding degenerative diseases. Mixed-effects models have been consistently used to model clinical assessments or biomarkers extracted from medical images, allowing missing data imputation and prediction at any timepoint. However, such progression models have seldom been used for entire medical images. In this work, a Variational Auto Encoder is coupled with a temporal linear mixed-effect model to learn a latent representation of the data such that individual trajectories follow straight lines over time and are characterised by a few interpretable parameters. A Monte Carlo estimator is devised to iteratively optimize the networks and the statistical model. We apply this method on a synthetic data set to illustrate the disentanglement between time dependant changes and inter-subjects variability, as well as the predictive capabilities of the method. We then apply it to 3D MRI and FDG-PET data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) to recover well documented patterns of structural and metabolic alterations of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allassonnière, S., Kuhn, E., Trouvé, A.: Construction of Bayesian deformable models via a stochastic approximation algorithm: a convergence study. Bernoulli 16(3), 641–678 (2010)

    Article  MathSciNet  Google Scholar 

  2. Ashman, M., So, J., Tebbutt, W., Fortuin, V., Pearce, M., Turner, R.E.: Sparse gaussian process variational autoencoders. arXiv preprint arXiv:2010.10177 (2020)

  3. Banerjee, M., Chakraborty, R., Ofori, E., Okun, M.S., Viallancourt, D.E., Vemuri, B.C.: A nonlinear regression technique for manifold valued data with applications to medical image analysis. In: Proceedings of the IEEE Conference On Computer Vision and Pattern Recognition, pp. 4424–4432 (2016)

    Google Scholar 

  4. Bauer, S., May, C., Dionysiou, D., Stamatakos, G., Buchler, P., Reyes, M.: Multiscale modeling for image analysis of brain tumor studies. IEEE Trans. Biomed. Eng. 59(1), 25–29 (2011)

    Article  Google Scholar 

  5. Bône, A., Colliot, O., Durrleman, S.: Learning distributions of shape trajectories from longitudinal datasets: a hierarchical model on a manifold of diffeomorphisms. In: CVPR 2018 - Computer Vision and Pattern Recognition 2018, Salt Lake City, United States, June 2018. https://hal.archives-ouvertes.fr/hal-01744538

  6. Bône, A., et al.: Prediction of the progression of subcortical brain structures in Alzheimer’s disease from baseline. In: Cardoso, M.J., et al. (eds.) GRAIL/MFCA/MICGen -2017. LNCS, vol. 10551, pp. 101–113. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67675-3_10

    Chapter  Google Scholar 

  7. Casale, F.P., Dalca, A.V., Saglietti, L., Listgarten, J., Fusi, N.: Gaussian process prior variational autoencoders. arXiv preprint arXiv:1810.11738 (2018)

  8. Coffey, C.E., et al.: Sex differences in brain aging: a quantitative magnetic resonance imaging study. Arch. Neurol. 55(2), 169–179 (1998)

    Article  Google Scholar 

  9. Couronné, R., Vernhet, P., Durrleman, S.: Longitudinal self-supervision to disentangle inter-patient variability from disease progression. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 231–241. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_22

    Chapter  Google Scholar 

  10. Couronné, R., Vernhet, P.: Starmen longitudinal (2021). https://doi.org/10.5281/zenodo.5081988

  11. Cui, R., Liu, M., et al.: RNN-based longitudinal analysis for diagnosis of Alzheimer’s disease. Comput. Med. Imaging Graph. 73, 1–10 (2019)

    Article  Google Scholar 

  12. Fonteijn, H.M., et al.: An event-based model for disease progression and its application in familial Alzheimer’s disease and Huntington’s disease. NeuroImage 60(3), 1880–1889 (2012)

    Article  Google Scholar 

  13. Fortuin, V., Baranchuk, D., Rätsch, G., Mandt, S.: GP-VAE: deep probabilistic time series imputation. In: International Conference On Artificial Intelligence and Statistics, pp. 1651–1661. PMLR (2020)

    Google Scholar 

  14. Gruffaz, S., Poulet, P.E., Maheux, E., Jedynak, B., Durrleman, S.: Learning Riemannian metric for disease progression modeling. Adv. Neural Inf. Process. Syst. 34, 23780–23792 (2021)

    Google Scholar 

  15. Gurvich, C., Hoy, K., Thomas, N., Kulkarni, J.: Sex differences and the influence of sex hormones on cognition through adulthood and the aging process. Brain Sci. 8(9), 163 (2018)

    Article  Google Scholar 

  16. Higgins, I., et al.: BETA-VAE: Learning basic visual concepts with a constrained variational framework (2016)

    Google Scholar 

  17. Jack, C.R., et al.: Age, sex, and apoe \(\varepsilon \)4 effects on memory, brain structure, and \(\beta \)-amyloid across the adult life span. JAMA Neurol. 72(5), 511–519 (2015)

    Article  Google Scholar 

  18. Jedynak, B.M., et al.: A computational neurodegenerative disease progression score: method and results with the Alzheimer’s disease neuroimaging initiative cohort. Neuroimage 63(3), 1478–1486 (2012)

    Article  Google Scholar 

  19. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  20. Koval, I., et al.: Statistical learning of spatiotemporal patterns from longitudinal manifold-valued networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 451–459. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_52

    Chapter  Google Scholar 

  21. Koval, I., et al.: AD Course Map charts Alzheimer’s disease progression. Sc. Rep. 11(1), -1-6 (2021). https://doi.org/10.1038/s41598-021-87434-1, https://hal.inria.fr/hal-01964821

  22. Kuhn, E., Lavielle, M.: Coupling a stochastic approximation version of EM with an MCMC procedure. ESAIM: Probabil. Statist 8, 115–131 (2004)

    Article  MathSciNet  Google Scholar 

  23. Liu, M., Cheng, D., Yan, W., Initiative, A.D.N., et al.: Classification of Alzheimer’s disease by combination of convolutional and recurrent neural networks using FDG-pet images. Front. Neuroinform. 12, 35 (2018)

    Article  Google Scholar 

  24. Louis, M., Couronné, R., Koval, I., Charlier, B., Durrleman, S.: Riemannian geometry learning for disease progression modelling. In: Chung, A., Gee, J., Yushkevich, P., Bao, S. (eds.) Information Processing in Medical Imaging. IPMI 2019. LNCS, vol. 11492, pp. 542–553. Springer, Cham (2019)

    Google Scholar 

  25. Niethammer, M., Huang, Y., Vialard, F.-X.: Geodesic regression for image time-series. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6892, pp. 655–662. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23629-7_80

    Chapter  Google Scholar 

  26. Ramchandran, S., Tikhonov, G., Kujanpää, K., Koskinen, M., Lähdesmäki, H.: Longitudinal variational autoencoder. In: International Conference on Artificial Intelligence and Statistics, pp. 3898–3906. PMLR (2021)

    Google Scholar 

  27. Routier, A., et al.: Clinica: an open-source software platform for reproducible clinical neuroscience studies. Front. Neuroinform. 15, 689675 (2021)

    Article  Google Scholar 

  28. Sauty, B., Durrleman, S.: Riemannian metric learning for progression modeling of longitudinal datasets. In: ISBI 2022-International Symposium on Biomedical Imaging (2022)

    Google Scholar 

  29. Schiratti, J.B., Allassonniere, S., Colliot, O., Durrleman, S.: Learning spatiotemporal trajectories from manifold-valued longitudinal data. In: Neural Information Processing Systems, vol. 28, Advances in Neural Information Processing Systems, Montréal, Canada, December 2015. https://hal.archives-ouvertes.fr/hal-01163373

  30. Zhao, Q., Liu, Z., Adeli, E., Pohl, K.M.: Longitudinal self-supervised learning. Med. Image Anal. 71, 102051 (2021)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded in part by grant number 678304 (ERC) and 826421 (TVB-Cloud) from H2020 programme, and ANR-10-IAIHU-06 (IHU ICM), ANR-19-P3IA-0001 (PRAIRIE) and ANR-19-JPW2-000 (E-DADS) from ANR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Sauty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sauty, B., Durrleman, S. (2022). Progression Models for Imaging Data with Longitudinal Variational Auto Encoders. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13431. Springer, Cham. https://doi.org/10.1007/978-3-031-16431-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16431-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16430-9

  • Online ISBN: 978-3-031-16431-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics