Abstract
Diagnosis based on medical images, such as X-ray images, often involves manual annotation of anatomical keypoints. However, this process involves significant human efforts and can thus be a bottleneck in the diagnostic process. To fully automate this procedure, deep-learning-based methods have been widely proposed and have achieved high performance in detecting keypoints in medical images. However, these methods still have clinical limitations: accuracy cannot be guaranteed for all cases, and it is necessary for doctors to double-check all predictions of models. In response, we propose a novel deep neural network that, given an X-ray image, automatically detects and refines the anatomical keypoints through a user-interactive system in which doctors can fix mispredicted keypoints with fewer clicks than needed during manual revision. Using our own collected data and the publicly available AASCE dataset, we demonstrate the effectiveness of the proposed method in reducing the annotation costs via extensive quantitative and qualitative results.
J. Kim and T. Kim—Both authors contributed equally.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bier, B., et al.: X-ray-transform invariant anatomical landmark detection for pelvic trauma surgery. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 55–63. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_7
Bulat, A., Sanchez, E., Tzimiropoulos, G.: Subpixel heatmap regression for facial landmark localization. In: The British Machine Vision Conference (BMVC) (2021)
Chen, R., Ma, Y., Chen, N., Lee, D., Wang, W.: Cephalometric landmark detection by attentive feature pyramid fusion and regression-voting. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 873–881. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_97
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7132–7141 (2018)
Jang, W.D., Kim, C.S.: Interactive image segmentation via backpropagating refinement scheme. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5297–5306 (2019)
Kim, D.W., et al.: Prediction of hand-wrist maturation stages based on cervical vertebrae images using artificial intelligence. Orthod. Craniofac. Res. 24, 68–75 (2021)
Kordon, F., et al.: Multi-task localization and segmentation for X-Ray guided planning in knee surgery. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 622–630. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_69
Lee, H.J., Kim, J.U., Lee, S., Kim, H.G., Ro, Y.M.: Structure boundary preserving segmentation for medical image with ambiguous boundary. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Li, J., Su, W., Wang, Z.: Simple pose: rethinking and improving a bottom-up approach for multi-person pose estimation. In: Proceedings the AAAI Conference on Artificial Intelligence (AAAI), pp. 11354–11361 (2020)
Li, W., et al.: Structured landmark detection via topology-adapting deep graph learning. arXiv preprint arXiv:2004.08190 (2020)
Lin, Z., Zhang, Z., Chen, L.Z., Cheng, M.M., Lu, S.P.: Interactive image segmentation with first click attention. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13339–13348 (2020)
Mahadevan, S., Voigtlaender, P., Leibe, B.: Iteratively trained interactive segmentation. In: British Machine Vision Conference (BMVC) (2018)
Payer, C., Štern, D., Bischof, H., Urschler, M.: Integrating spatial configuration into heatmap regression based CNNs for landmark localization. Med. Image Anal. 54, 207–219 (2019)
Peng, C., Lin, W.A., Liao, H., Chellappa, R., Zhou, S.K.: Saint: spatially aware interpolation network for medical slice synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Qian, J., Luo, W., Cheng, M., Tao, Y., Lin, J., Lin, H.: CephaNN: a multi-head attention network for cephalometric landmark detection. IEEE Access 8, 112633–112641 (2020)
Safavi, S.M., Beikaii, H., Hassanizadeh, R., Younessian, F., Baghban, A.A.: Correlation between cervical vertebral maturation and chronological age in a group of Iranian females. Dental Res. J. 12(5), 443 (2015)
Sakinis, T., et al.: Interactive segmentation of medical images through fully convolutional neural networks. arXiv preprint arXiv:1903.08205 (2019)
Sofiiuk, K., Petrov, I., Barinova, O., Konushin, A.: f-BRS: rethinking backpropagating refinement for interactive segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8623–8632 (2020)
Sofiiuk, K., Petrov, I., Konushin, A.: Reviving iterative training with mask guidance for interactive segmentation. arXiv preprint arXiv:2102.06583 (2021)
Wang, C.W., et al.: A benchmark for comparison of dental radiography analysis algorithms. Med. Image Anal. 31, 63–76 (2016)
Wang, G., et al.: Interactive medical image segmentation using deep learning with image-specific fine tuning. IEEE Trans. Med. Imaging 37(7), 1562–1573 (2018)
Wang, J., et al.: Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 43(10), 3349–3364 (2020)
Wang, S., et al.: LT-Net: label transfer by learning reversible voxel-wise correspondence for one-shot medical image segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Wu, H., Bailey, C., Rasoulinejad, P., Li, S.: Automatic landmark estimation for adolescent idiopathic scoliosis assessment using BoostNet. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 127–135. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_15
Yi, J., Wu, P., Huang, Q., Qu, H., Metaxas, D.N.: Vertebra-focused landmark detection for scoliosis assessment. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 736–740 (2020)
Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 173–190. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_11
Zhong, Z., Li, J., Zhang, Z., Jiao, Z., Gao, X.: An attention-guided deep regression model for landmark detection in cephalograms. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 540–548. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_60
Zhou, T., Li, L., Bredell, G., Li, J., Konukoglu, E.: Quality-aware memory network for interactive volumetric image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 560–570. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_52
Acknowledgements
This work was supported by the Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korean government(MSIT) (No. 2019-0-00075, Artificial Intelligence Graduate School Program(KAIST)), the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. NRF-2019R1A2C4070420), the National Supercomputing Center with supercomputing resources including technical support (KSC-2022-CRE-0119), and the Korea Medical Device Development Fund grant funded by the Korea government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health & Welfare, the Ministry of Food and Drug Safety) (Project Number: 1711139098, RS-2021-KD000009).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kim, J. et al. (2022). Morphology-Aware Interactive Keypoint Estimation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13433. Springer, Cham. https://doi.org/10.1007/978-3-031-16437-8_65
Download citation
DOI: https://doi.org/10.1007/978-3-031-16437-8_65
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16436-1
Online ISBN: 978-3-031-16437-8
eBook Packages: Computer ScienceComputer Science (R0)