Nothing Special   »   [go: up one dir, main page]

Skip to main content

A New Dataset and a Baseline Model for Breast Lesion Detection in Ultrasound Videos

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13433))

  • 7572 Accesses

Abstract

Breast lesion detection in ultrasound is critical for breast cancer diagnosis. Existing methods mainly rely on individual 2D ultrasound images or combine unlabeled video and labeled 2D images to train models for breast lesion detection. In this paper, we first collect and annotate an ultrasound video dataset (188 videos) for breast lesion detection. Moreover, we propose a clip-level and video-level feature aggregated network (CVA-Net) for addressing breast lesion detection in ultrasound videos by aggregating video-level lesion classification features and clip-level temporal features. The clip-level temporal features encode local temporal information of ordered video frames and global temporal information of shuffled video frames. In our CVA-Net, an inter-video fusion module is devised to fuse local features from original video frames and global features from shuffled video frames, and an intra-video fusion module is devised to learn the temporal information among adjacent video frames. Moreover, we learn video-level features to classify the breast lesions of the original video as benign or malignant lesions to further enhance the final breast lesion detection performance in ultrasound videos. Experimental results on our annotated dataset demonstrate that our CVA-Net clearly outperforms state-of-the-art methods. The corresponding code and dataset are publicly available at https://github.com/jhl-Det/CVA-Net.

Z. Lin and J. Lin—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, S., et al.: Semi-supervised breast lesion detection in ultrasound video based on temporal coherence. arXiv preprint arXiv:1907.06941 (2019)

  2. Chen, Y., Cao, Y., Hu, H., Wang, L.: Memory enhanced global-local aggregation for video object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10337–10346 (2020)

    Google Scholar 

  3. Deng, J., Dong, W., Socher, R., Li, L.J., Li, F.F.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition (2009)

    Google Scholar 

  4. Gong, T., et al.: Temporal ROI align for video object recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 35, pp. 1442–1450 (2021)

    Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  6. Li, X., et al.: Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection. arXiv preprint arXiv:2006.04388 (2020)

  7. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  8. Lin, T., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  9. Movahedi, M.M., Zamani, A., Parsaei, H., Tavakoli Golpaygani, A., Haghighi Poya, M.R.: Automated analysis of ultrasound videos for detection of breast lesions. Middle East J. Cancer 11(1), 80–90 (2020)

    Google Scholar 

  10. Qi, X., et al.: Automated diagnosis of breast ultrasonography images using deep neural networks. Med. Image Anal. 52, 185–198 (2019)

    Article  Google Scholar 

  11. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. arXiv preprint arXiv:1506.01497 (2015)

  12. Rezatofighi, S.H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 658–666 (2019)

    Google Scholar 

  13. Stavros, A.T., Thickman, D., Rapp, C.L., Dennis, M.A., Parker, S.H., Sisney, G.A.: Solid breast nodules: use of sonography to distinguish between benign and malignant lesions. Radiology 196(1), 123–134 (1995)

    Article  Google Scholar 

  14. Vu, T., Jang, H., Pham, T.X., Yoo, C.D.: Cascade RPN: delving into high-quality region proposal network with adaptive convolution. ArXiv abs/1909.06720 (2019)

    Google Scholar 

  15. Wang, X., Kong, T., Shen, C., Jiang, Y., Li, L.: SOLO: segmenting objects by locations. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 649–665. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_38

    Chapter  Google Scholar 

  16. Wild, C., Weiderpass, E., Stewart, B.W.: World Cancer Report: Cancer Research for Cancer Prevention. IARC Press (2020)

    Google Scholar 

  17. Wu, H., Chen, Y., Wang, N., Zhang, Z.: Sequence level semantics aggregation for video object detection. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9216–9224 (2019)

    Google Scholar 

  18. Xue, C., et al.: Global guidance network for breast lesion segmentation in ultrasound images. Med. Image Anal. 70, 101989 (2021)

    Article  Google Scholar 

  19. Yang, Z., Gong, X., Guo, Y., Liu, W.: A temporal sequence dual-branch network for classifying hybrid ultrasound data of breast cancer. IEEE Access 8, 82688–82699 (2020)

    Article  Google Scholar 

  20. Yap, M.H., et al.: Automated breast ultrasound lesions detection using convolutional neural networks. IEEE J. Biomed. Health Inform. 22(4), 1218–1226 (2017)

    Article  Google Scholar 

  21. Zhang, E., Seiler, S., Chen, M., Lu, W., Gu, X.: Birads features-oriented semi-supervised deep learning for breast ultrasound computer-aided diagnosis. Phys. Med. Biol. 65(12), 125005 (2020)

    Article  Google Scholar 

  22. Zhang, H., Wang, Y., Dayoub, F., Sunderhauf, N.: Varifocalnet: an IoU-aware dense object detector. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8510–8519 (2021)

    Google Scholar 

  23. Zhu, L., et al.: A second-order subregion pooling network for breast lesion segmentation in ultrasound. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 160–170. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_16

    Chapter  Google Scholar 

  24. Zhu, X., Wang, Y., Dai, J., Yuan, L., Wei, Y.: Flow-guided feature aggregation for video object detection. In: IEEE International Conference on Computer Vision (ICCV), pp. 408–417 (2017)

    Google Scholar 

  25. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)

  26. Zhu, X., Xiong, Y., Dai, J., Yuan, L., Wei, Y.: Deep feature flow for video recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2349–2358 (2017)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (No. 61902275, No. 12026604), AME Programmatic Fund (A20H4b0141), and Hong Kong Research Grants Council under General Research Fund (No. 15205919).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, Z., Lin, J., Zhu, L., Fu, H., Qin, J., Wang, L. (2022). A New Dataset and a Baseline Model for Breast Lesion Detection in Ultrasound Videos. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13433. Springer, Cham. https://doi.org/10.1007/978-3-031-16437-8_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16437-8_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16436-1

  • Online ISBN: 978-3-031-16437-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics