Nothing Special   »   [go: up one dir, main page]

Skip to main content

Dual-Distribution Discrepancy for Anomaly Detection in Chest X-Rays

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13433))

Abstract

Chest X-ray (CXR) is the most typical radiological exam for diagnosis of various diseases. Due to the expensive and time-consuming annotations, detecting anomalies in CXRs in an unsupervised fashion is very promising. However, almost all of the existing methods consider anomaly detection as a one-class classification (OCC) problem. They model the distribution of only known normal images during training and identify the samples not conforming to normal profile as anomalies in the testing phase. A large number of unlabeled images containing anomalies are thus ignored in the training phase, although they are easy to obtain in clinical practice. In this paper, we propose a novel strategy, Dual-distribution Discrepancy for Anomaly Detection (DDAD), utilizing both known normal images and unlabeled images. The proposed method consists of two modules. During training, one module takes both known normal and unlabeled images as inputs, capturing anomalous features from unlabeled images in some way, while the other one models the distribution of only known normal images. Subsequently, inter-discrepancy between the two modules, and intra-discrepancy inside the module that is trained on only normal images are designed as anomaly scores to indicate anomalies. Experiments on three CXR datasets demonstrate that the proposed DDAD achieves consistent, significant gains and outperforms state-of-the-art methods. Code is available at https://github.com/caiyu6666/DDAD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.kaggle.com/c/rsna-pneumonia-detection-challenge.

  2. 2.

    https://www.kaggle.com/c/vinbigdata-chest-xray-abnormalities-detection.

References

  1. Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: GANomaly: semi-supervised anomaly detection via adversarial training. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 622–637. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_39

    Chapter  Google Scholar 

  2. Baur, C., Denner, S., Wiestler, B., Navab, N., Albarqouni, S.: Autoencoders for unsupervised anomaly segmentation in brain MR images: a comparative study. Med. Image Anal. 69, 101952 (2021)

    Article  Google Scholar 

  3. Baur, C., Wiestler, B., Albarqouni, S., Navab, N.: Scale-space autoencoders for unsupervised anomaly segmentation in brain MRI. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 552–561. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_54

    Chapter  Google Scholar 

  4. Erdi Çallı, Ecem Sogancioglu, Bram van Ginneken, Kicky G van Leeuwen, and Keelin Murphy. Deep learning for chest x-ray analysis: a survey. Med. Image Anal. 72,102125 (2021)

    Google Scholar 

  5. Chen, X., Pawlowski, N., Glocker, B., Konukoglu, E.: Normative ascent with local gaussians for unsupervised lesion detection. Med. Image Anal. 74, 102208 (2021)

    Article  Google Scholar 

  6. Gong, D., et al.: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1705–1714 (2019)

    Google Scholar 

  7. Jing, L., Tian, Y.: Self-supervised visual feature learning with deep neural networks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 43(11), 4037–4058 (2020)

    Article  Google Scholar 

  8. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  9. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  10. Li, C.L., Sohn, K., Yoon, J., Pfister, T.: Cutpaste: self-supervised learning for anomaly detection and localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9664–9674 (2021)

    Google Scholar 

  11. Luo, L., Chen, H., Zhou, Y., Lin, H., Heng, P.-A.: OXnet: deep omni-supervised thoracic disease detection from chest X-rays. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 537–548. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_50

    Chapter  Google Scholar 

  12. Luo, L., et al.: Deep mining external imperfect data for chest x-ray disease screening. IEEE Trans. Med. Imaging 39(11), 3583–3594 (2020)

    Article  Google Scholar 

  13. Mao, Y., Xue, F.-F., Wang, R., Zhang, J., Zheng, W.-S., Liu, H.: Abnormality detection in chest x-ray images using uncertainty prediction autoencoders. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 529–538. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_51

    Chapter  Google Scholar 

  14. Marimont, S. N., Tarroni, G.: Anomaly detection through latent space restoration using vector quantized variational autoencoders. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 1764–1767. IEEE (2021)

    Google Scholar 

  15. Ruff, L., et al.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402. PMLR (2018)

    Google Scholar 

  16. Schlegl, T., Seeböck, P., Waldstein, S.M., Langs, G., Schmidt-Erfurth, U.: f-anogan: fast unsupervised anomaly detection with generative adversarial networks. Med. Image Anal. 54, 30–44 (2019)

    Article  Google Scholar 

  17. Sohn, K., Li, C.L., Yoon, J., Jin, M., Pfister, T.: Learning and evaluating representations for deep one-class classification. arXiv preprint arXiv:2011.02578 (2020)

  18. Tan, J., Hou, B., Batten, J., Qiu, H., Kainz, B.: Detecting outliers with foreign patch interpolation. arXiv preprint arXiv:2011.04197 (2020)

  19. Tan, J., Hou, B., Day, T., Simpson, J., Rueckert, D., Kainz, B.: Detecting outliers with poisson image interpolation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 581–591. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_56

    Chapter  Google Scholar 

  20. Tian, Y., et al.: Constrained contrastive distribution learning for unsupervised anomaly detection and localisation in medical images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 128–140. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_13

    Chapter  Google Scholar 

  21. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.. Chestx-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2097–2106 (2017)

    Google Scholar 

  22. Zavrtanik, V., Kristan, M., Skočaj, D.: Draem-a discriminatively trained reconstruction embedding for surface anomaly detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8330–8339 (2021)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Key Research and Development Program of China (grant No. 2018AAA0100400), the National Natural Science Foundation of China (grant No. 62176098, 61872417 and 62061160490), the Natural Science Foundation of Hubei Province of China (grant No. 2019CFA022), and the UGC Grant (grant No. BGF.005.2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cai, Y., Chen, H., Yang, X., Zhou, Y., Cheng, KT. (2022). Dual-Distribution Discrepancy for Anomaly Detection in Chest X-Rays. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13433. Springer, Cham. https://doi.org/10.1007/978-3-031-16437-8_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16437-8_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16436-1

  • Online ISBN: 978-3-031-16437-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics