Nothing Special   »   [go: up one dir, main page]

Skip to main content

mulEEG: A Multi-view Representation Learning on EEG Signals

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Modeling effective representations using multiple views that positively influence each other is challenging, and the existing methods perform poorly on Electroencephalogram (EEG) signals for sleep-staging tasks. In this paper, we propose a novel multi-view self-supervised method (mulEEG) for unsupervised EEG representation learning. Our method attempts to effectively utilize the complementary information available in multiple views to learn better representations. We introduce diverse loss that further encourages complementary information across multiple views. Our method with no access to labels, beats the supervised training while outperforming multi-view baseline methods on transfer learning experiments carried out on sleep-staging tasks. We posit that our method was able to learn better representations by using complementary multi-views (Code Available at: https://github.com/likith012/mulEEG).

V. Kumar and L. Reddy—Equal Contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arandjelovic, R., Zisserman, A.: Look, listen and learn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 609–617 (2017)

    Google Scholar 

  2. Banville, H., Chehab, O., Hyvärinen, A., Engemann, D.A., Gramfort, A.: Uncovering the structure of clinical EEG signals with self-supervised learning. J. Neural Eng. 18(4), 046020 (2021)

    Google Scholar 

  3. Berry, R.B., et al.: Aasm scoring manual updates for 2017 (version 2.4) (2017)

    Google Scholar 

  4. Bianchi, M.T., Cash, S.S., Mietus, J., Peng, C.K., Thomas, R.: Obstructive sleep apnea alters sleep stage transition dynamics. PLoS One, 5(6), e11356 (2010)

    Google Scholar 

  5. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: Proceedings of the European conference on Computer Vision (ECCV), pp. 132–149 (2018)

    Google Scholar 

  6. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. Adv. Neural. Inf. Process. Syst. 33, 9912–9924 (2020)

    Google Scholar 

  7. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  8. Chen, X., He, K.: Exploring simple siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758 (2021)

    Google Scholar 

  9. Eldele, E., et al.: An attention-based deep learning approach for sleep stage classification with single-channel EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 29, 809–818 (2021)

    Article  Google Scholar 

  10. Eldele, E., et al.: Time-series representation learning via temporal and contextual contrasting. In: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pp. 2352–2359 (2021)

    Google Scholar 

  11. Freeman, D., Sheaves, B., Waite, F., Harvey, A.G., Harrison, P.J.: Sleep disturbance and psychiatric disorders. Lancet Psychiatry 7(7), 628–637 (2020)

    Article  Google Scholar 

  12. Goldberger, A., et al.: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

  13. Gottesmann, C., Gottesman, I.: The neurobiological characteristics of rapid eye movement (REM) sleep are candidate endophenotypes of depression, schizophrenia, mental retardation and dementia. Prog. Neurobiol. 81(4), 237–250 (2007)

    Article  Google Scholar 

  14. Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. Adv. Neural. Inf. Process. Syst. 33, 21271–21284 (2020)

    Google Scholar 

  15. Han, T., Xie, W., Zisserman, A.: Self-supervised co-training for video representation learning. Adv. Neural. Inf. Process. Syst. 33, 5679–5690 (2020)

    Google Scholar 

  16. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  18. Korbar, B., Tran, D., Torresani, L.: Cooperative learning of audio and video models from self-supervised synchronization. Advances in Neural Information Processing Systems 31 (2018)

    Google Scholar 

  19. Mohsenvand, M.N., Izadi, M.R., Maes, P.: Contrastive representation learning for electroencephalogram classification. In: Machine Learning for Health, pp. 238–253. PMLR (2020)

    Google Scholar 

  20. Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  21. Phan, H., Chén, O.Y., Tran, M.C., Koch, P., Mertins, A., De Vos, M.: Xsleepnet: multi-view sequential model for automatic sleep staging. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2021)

    Google Scholar 

  22. Sors, A., Bonnet, S., Mirek, S., Vercueil, L., Payen, J.F.: A convolutional neural network for sleep stage scoring from raw single-channel EEG. Biomed. Signal Process. Control 42, 107–114 (2018)

    Article  Google Scholar 

  23. Supratak, A., Dong, H., Wu, C., Guo, Y.: Deepsleepnet: a model for automatic sleep stage scoring based on raw single-channel EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 25(11), 1998–2008 (2017)

    Article  Google Scholar 

  24. Tian, Y., Krishnan, D., Isola, P.: Contrastive multiview coding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 776–794. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_45

    Chapter  Google Scholar 

  25. Yang, C., Xiao, D., Westover, M.B., Sun, J.: Self-supervised eeg representation learning for automatic sleep staging. arXiv preprint arXiv:2110.15278 (2021)

  26. Younes, M., et al.: Reliability of the american academy of sleep medicine rules for assessing sleep depth in clinical practice. J. Clin. Sleep Med. 14(2), 205–213 (2018)

    Article  Google Scholar 

  27. Yuan, X., et al.: Multimodal contrastive training for visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6995–7004 (2021)

    Google Scholar 

  28. Zhang, G.Q., et al.: The national sleep research resource: towards a sleep data commons. J. Am. Med. Inform. Assoc. 25(10), 1351–1358 (2018)

    Article  Google Scholar 

  29. Zhu, G., Li, Y., Wen, P.: Analysis and classification of sleep stages based on difference visibility graphs from a single-channel EEG signal. IEEE J. Biomed. Health Inform. 18(6), 1813–1821 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vamsi Kumar .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2388 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, V. et al. (2022). mulEEG: A Multi-view Representation Learning on EEG Signals. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13433. Springer, Cham. https://doi.org/10.1007/978-3-031-16437-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16437-8_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16436-1

  • Online ISBN: 978-3-031-16437-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics