Nothing Special   »   [go: up one dir, main page]

Skip to main content

Coronary R-CNN: Vessel-Wise Method for Coronary Artery Lesion Detection and Analysis in Coronary CT Angiography

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13433))

Abstract

In recent decades, coronary artery disease (CAD) is the leading cause of death worldwide. Therefore, automatic diagnostic methods are strongly necessary with the progressively increasing number of CAD patients. However, it is difficult for physicians to recognize the lesion from Coronary CT Angiography (CCTA) scans as the coronary plaques have complicated appearance and patterns. Previous studies are mostly based on the single image patch around a lesion, which are often limited by the field of view of the local sample patch. To address this problem, in this paper we propose a novel vessel-wise object detection method. Different with previous approaches, we directly input the whole curved planar reformation (CPR) volume along the coronary artery centerline into our deep learning network, and then predict the plaque type and stenosis degree simultaneously. This enables the network to learn the dependencies between distant locations. In addition, two cascade modules are used to decompose the challenging problem into two simpler tasks and this also yields better interpretability. We evaluated our method on a dataset of 1031 CCTA images. The experimental results demonstrated the efficacy of our presented approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mendis, S., Davis, S., Norrving, B.: Organizational update: the World Health Organization global status report on noncommunicable diseases 2014. Stroke 46(5), e121–e122 (2015)

    Article  Google Scholar 

  2. Dewey, M., Rutsch, W., Schnapauff, D., Teige, F., Hamm, B.: Coronary artery stenosis quantification using multislice computed tomography. Invest. Radiol. 42(2), 78–84 (2007)

    Article  Google Scholar 

  3. Kirişli, H., et al.: Standardized evaluation framework for evaluating coronary artery stenosis detection, stenosis quantification and lumen segmentation algorithms in computed tomography angiography. Med. Image Anal. 17(8), 859–876 (2013)

    Article  Google Scholar 

  4. Kim, Y.J., et al.: Quantification of coronary artery plaque using 64-slice dual-source CT: comparison of semi-automatic and automatic computer-aided analysis based on intravascular ultrasonography as the gold standard. Int. J. Cardiovasc. Imaging 29(2), 93–100 (2013)

    Google Scholar 

  5. Sankaran, S., Schaap, M., Hunley, S.C., Min, J.K., Taylor, C.A., Grady, L.: HALE: healthy area of lumen estimation for vessel stenosis quantification. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 380–387. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_44

    Chapter  Google Scholar 

  6. Shahzad, R., et al.: Automatic segmentation, detection and quantification of coronary artery stenoses on CTA. Int. J. Cardiovasc. Imaging 29(8), 1847–1859 (2013). https://doi.org/10.1007/s10554-013-0271-1

    Article  Google Scholar 

  7. Dey, D., et al.: Automated 3-dimensional quantification of noncalcified and calcified coronary plaque from coronary CT angiography. J. Cardiovasc. Comput. Tomogr. 3(6), 372–382 (2009)

    Article  Google Scholar 

  8. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Google Scholar 

  9. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham. https://doi.org/10.1007/978-3-319-24574-4_28

  10. Tejero-de-Pablos, A., et al.: Texture-based classification of significant stenosis in CCTA multi-view images of coronary arteries. In: Shen, D., et al. MICCAI 2019. LNCS, vol. 11765, pp. 732–740. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_81

  11. Denzinger, F., et al.: Coronary artery plaque characterization from CCTA scans using deep learning and radiomics. In: Shen, D., et al. MICCAI 2019. LNCS, vol. 11767, pp. 593–601. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_65

  12. Ma, X., Luo, G., Wang, W., Wang, K.: Transformer network for significant stenosis detection in CCTA of coronary arteries. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 516–525. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_50

    Chapter  Google Scholar 

  13. Zreik, M., Van Hamersvelt, R.W., Wolterink, J.M., Leiner, T., Viergever, M.A., Išgum, I.: A recurrent CNN for automatic detection and classification of coronary artery plaque and stenosis in coronary CT angiography. IEEE Trans. Med. Imaging 38(7), 1588–1598 (2018)

    Article  Google Scholar 

  14. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural. Inf. Process. Syst. 28, 91–99 (2015)

    Google Scholar 

  15. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770–778 (2016)

    Google Scholar 

  17. Leipsic, J., et al.: SCCT guidelines for the interpretation and reporting of coronary CT angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J. Cardiovasc. Comput. Tomogr. 8(5), 342–358 (2014)

    Google Scholar 

  18. Zhou, Z., Sodha, V., Pang, J., Gotway, M.B., Liang, J.: Models genesis. Med. Image Anal. 67, 101840 (2021)

    Article  Google Scholar 

  19. Nørgaard, B.L., et al.: Myocardial perfusion imaging versus computed tomography angiography–derived fractional flow reserve testing in stable patients with intermediate‐range coronary lesions: influence on downstream diagnostic workflows and invasive angiography findings. J. Am. Heart Assoc. 6(8), e005587 (2017)

    Google Scholar 

  20. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. DLMIA ML-CDS 2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

  21. Guo, Z., et al.: DeepCenterline: a multi-task fully convolutional network for centerline extraction. In: Chung, A., Gee, J., Yushkevich, P., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 441–453 (2019). Springer, Cham. https://doi.org/10.1007/978-3-030-20351-1_34

  22. Rajon, D.A., Bolch, W.E.: Marching cube algorithm: review and trilinear interpolation adaptation for image-based dosimetric models. Comput. Med. Imaging Graph. 27(5), 411–435 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Li .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 370 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Ma, J., Li, J. (2022). Coronary R-CNN: Vessel-Wise Method for Coronary Artery Lesion Detection and Analysis in Coronary CT Angiography. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13433. Springer, Cham. https://doi.org/10.1007/978-3-031-16437-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16437-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16436-1

  • Online ISBN: 978-3-031-16437-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics