Nothing Special   »   [go: up one dir, main page]

Skip to main content

SUPER-IVIM-DC: Intra-voxel Incoherent Motion Based Fetal Lung Maturity Assessment from Limited DWI Data Using Supervised Learning Coupled with Data-Consistency

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Intra-voxel incoherent motion (IVIM) analysis of fetal lungs Diffusion-Weighted MRI (DWI) data shows potential in providing quantitative imaging bio-markers that reflect, indirectly, diffusion and pseudo-diffusion for non-invasive fetal lung maturation assessment. However, long acquisition times, due to the large number of different “b-value” images required for IVIM analysis, precluded clinical feasibility. We introduce SUPER-IVIM-DC a deep-neural-networks (DNN) approach which couples supervised loss with a data-consistency term to enable IVIM analysis of DWI data acquired with a limited number of b-values. We demonstrated the added-value of SUPER-IVIM-DC over both classical and recent DNN approaches for IVIM analysis through numerical simulations, healthy volunteer study, and IVIM analysis of fetal lung maturation from fetal DWI data. Our numerical simulations and healthy volunteer study show that SUPER-IVIM-DC estimates of the IVIM model parameters from limited DWI data had lower normalized root mean-squared error compared to previous DNN-based approaches. Further, SUPER-IVIM-DC estimates of the pseudo-diffusion fraction parameter from limited DWI data of fetal lungs correlate better with gestational age compared to both to classical and DNN-based approaches (0.555 vs. 0.463 and 0.310). SUPER-IVIM-DC has the potential to reduce the long acquisition times associated with IVIM analysis of DWI data and to provide clinically feasible bio-markers for non-invasive fetal lung maturity assessment.

This research was supported in part by a grant from the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Our code and trained models are available on GitHub:https://github.com/TechnionComputationalMRILab/SUPER-IVIM-DC.

References

  1. Afacan, O., et al.: Fetal lung apparent diffusion coefficient measurement using diffusion-weighted MRI at 3 Tesla: correlation with gestational age. J. Magn. Reson. Imaging 44(6), 1650–1655 (2016). https://doi.org/10.1002/jmri.25294

  2. Ahlfeld, S.K., Conway, S.J.: Assessment of inhibited alveolar-capillary membrane structural development and function in bronchopulmonary dysplasia. Birth Defects Res. A 100(3), 168–179 (2014)

    Article  Google Scholar 

  3. Barbieri, S., Gurney-Champion, O.J., Klaassen, R., Thoeny, H.C.: Deep learning how to fit an intravoxel incoherent motion model to diffusion-weighted MRI. Magn. Reson. Med. 83(1), 312–321 (2020)

    Article  Google Scholar 

  4. Bertleff, M., et al.: Diffusion parameter mapping with the combined intravoxel incoherent motion and kurtosis model using artificial neural networks at 3 T. NMR Biomed. 30(12), e3833 (2017)

    Article  Google Scholar 

  5. Deshmukh, S., Rubesova, E., Barth, R.: MR assessment of normal fetal lung volumes: a literature review. Am. J. Roentgenol. 194(2), W212–W217 (2010)

    Article  Google Scholar 

  6. Ercolani, G., et al.: IntraVoxel Incoherent Motion (IVIM) MRI of fetal lung and kidney: can the perfusion fraction be a marker of normal pulmonary and renal maturation? Eur. J. Radiol. 139, 109726 (2021). https://doi.org/10.1016/J.EJRAD.2021.109726

  7. Freiman, M., et al.: Reliable estimation of incoherent motion parametric maps from diffusion-weighted MRI using fusion bootstrap moves. Med. Image Anal. 17(3), 325–336 (2013)

    Article  Google Scholar 

  8. Freiman, M., Voss, S.D., Mulkern, R.V., Perez-Rossello, J.M., Callahan, M.J., Warfield, S.K.: In vivo assessment of optimal B-value range for perfusion-insensitive apparent diffusion coefficient imaging. Med. Phys. 39(8), 4832–4839 (2012)

    Article  Google Scholar 

  9. Gurney-Champion, O.J., et al.: Comparison of six fit algorithms for the intra-voxel incoherent motion model of diffusion-weighted magnetic resonance imaging data of pancreatic cancer patients. PLoS ONE 13(4), e0194590 (2018)

    Article  Google Scholar 

  10. Jakab, A., et al.: Microvascular perfusion of the placenta, developing fetal liver, and lungs assessed with intravoxel incoherent motion imaging. J. Magn. Reson. Imaging 48(1), 214–225 (2018)

    Article  Google Scholar 

  11. Kaandorp, M.P., et al.: Improved unsupervised physics-informed deep learning for intravoxel incoherent motion modeling and evaluation in pancreatic cancer patients. Magn. Reson. Med. 86(4), 2250–2265 (2021)

    Article  Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  13. Lakshminrusimha, S., Keszler, M.: Persistent pulmonary hypertension of the newborn. NeoReviews 16(12), e680–e692 (2015)

    Article  Google Scholar 

  14. Le Bihan, D.: What can we see with IVIM MRI? Neuroimage 187, 56–67 (2019)

    Article  Google Scholar 

  15. Moeglin, D., Talmant, C., Duyme, M., Lopez, A.C.: Fetal lung volumetry using two- and three-dimensional ultrasound. Ultrasound Obstet. Gynecol. 25(2), 119–127 (2005). https://doi.org/10.1002/UOG.1799

  16. Neil, J.J., Bretthorst, G.L.: On the use of Bayesian probability theory for analysis of exponential decay date: an example taken from intravoxel incoherent motion experiments. Magn. Reson. Med. 29(5), 642–647 (1993)

    Article  Google Scholar 

  17. Orton, M.R., Collins, D.J., Koh, D.M., Leach, M.O.: Improved intravoxel incoherent motion analysis of diffusion weighted imaging by data driven Bayesian modeling. Magn. Reson. Med. 71(1), 411–420 (2014)

    Article  Google Scholar 

  18. Schittny, J.C.: Development of the lung. Cell Tissue Res. 367(3), 427–444 (2017). https://doi.org/10.1007/s00441-016-2545-0

    Article  Google Scholar 

  19. Spinner, G.R., Federau, C., Kozerke, S.: Bayesian inference using hierarchical and spatial priors for intravoxel incoherent motion MR imaging in the brain: analysis of cancer and acute stroke. Med. Image Anal. 73, 102144 (2021)

    Article  Google Scholar 

  20. Vasylechko, S.D., Warfield, S.K., Afacan, O., Kurugol, S.: Self-supervised IVIM DWI parameter estimation with a physics based forward model. Magn. Reson. Med. 87(2), 904–914 (2022)

    Article  Google Scholar 

  21. Zhang, L., Vishnevskiy, V., Jakab, A., Goksel, O.: Implicit modeling with uncertainty estimation for intravoxel incoherent motion imaging. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1003–1007. IEEE (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noam Korngut .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Korngut, N. et al. (2022). SUPER-IVIM-DC: Intra-voxel Incoherent Motion Based Fetal Lung Maturity Assessment from Limited DWI Data Using Supervised Learning Coupled with Data-Consistency. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13432. Springer, Cham. https://doi.org/10.1007/978-3-031-16434-7_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16434-7_71

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16433-0

  • Online ISBN: 978-3-031-16434-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics