Abstract
Considering the huge size of the gigapixel whole slide image (WSI), multiple instance learning (MIL) is normally employed to address pathological image analysis tasks, where learning an informative and effective representation of each WSI plays a central role but remains challenging due to the weakly supervised nature of MIL. To this end, we present a novel Spatial Encoding Transformer-based MIL method, SETMIL, which has the following advantages. (1) It is a typical embedded-space MIL method and therefore has the advantage of generating the bag embedding by comprehensively encoding all instances with a fully trainable transformer-based aggregating module. (2) SETMIL leverages spatial-encoding-transformer layers to update the representation of an instance by aggregating both neighbouring instances and globally-correlated instances simultaneously. (3) The joint absolute-relative position encoding design in the aggregating module further improves the context-information-encoding ability of SETMIL. (4) SETMIL designs a transformer-based pyramid multi-scale fusion module to comprehensively encode the information with different granularity using multi-scale receptive fields and make the obtained representation enriched with multi-scale context information. Extensive experiments demonstrated the superior performance of SETMIL in challenging pathological image analysis tasks such as gene mutation and lymph node metastasis prediction.
Y. Zhao, Z. Lin, and K. Sun—Equally-contributed authors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Our code is available at: https://github.com/TencentAILabHealthcare/SETMIL.git.
References
Amores, J.: Multiple instance classification: review, taxonomy and comparative study. Artif. Intell. 201, 81–105 (2013)
Campanella, G., et al.: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 25(8), 1301–1309 (2019)
Diao, J.A., et al.: Human-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular phenotypes. Nat. Commun. 12(1), 1–15 (2021)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (2020)
Garrett, W.S.: Cancer and the microbiota. Science 348(6230), 80–86 (2015)
Hashimoto, N., et al.: Multi-scale domain-adversarial multiple-instance CNN for cancer subtype classification with unannotated histopathological images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3852–3861 (2020)
Ilse, M., Tomczak, J., Welling, M.: Attention-based deep multiple instance learning. In: International Conference on Machine Learning, pp. 2127–2136. PMLR (2018)
Kandemir, M., Hamprecht, F.A.: Computer-aided diagnosis from weak supervision: a benchmarking study. Computeriz. Med. Imaging Graph. 42, 44–50 (2015)
Kather, J.N., et al.: Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat. Med. 25(7), 1054–1056 (2019)
Li, B., Li, Y., Eliceiri, K.W.: Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14318–14328 (2021)
Li, R., Yao, J., Zhu, X., Li, Y., Huang, J.: Graph CNN for survival analysis on whole slide pathological images. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 174–182. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_20
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International Conference on Learning Representations (2018)
Lu, M.Y., et al.: Ai-based pathology predicts origins for cancers of unknown primary. Nature 594(7861), 106–110 (2021)
Lu, M.Y., Williamson, D.F., Chen, T.Y., Chen, R.J., Barbieri, M., Mahmood, F.: Data-efficient and weakly supervised computational pathology on whole-slide images. Nat. Biomed. Eng. 5(6), 555–570 (2021)
Mehta, S., Mercan, E., Bartlett, J., Weaver, D., Elmore, J.G., Shapiro, L.: Y-net: joint segmentation and classification for diagnosis of breast biopsy images. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 893–901. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_99
Rubin, R., et al.: Rubin’s Pathology: Clinicopathologic Foundations of Medicine. Lippincott Williams & Wilkins (2008)
Shao, Z., et al.: Transmil: transformer based correlated multiple instance learning for whole slide image classication. arXiv preprint arXiv:2106.00908 (2021)
Skrede, O.J., et al.: Deep learning for prediction of colorectal cancer outcome: a discovery and validation study. The Lancet 395(10221), 350–360 (2020)
Song, Z., et al.: Clinically applicable histopathological diagnosis system for gastric cancer detection using deep learning. Nat. Commun. 11(1), 1–9 (2020)
Srinidhi, C.L., Ciga, O., Martel, A.L.: Deep neural network models for computational histopathology: a survey. Med. Image Anal. 101813 (2020)
Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)
Wang, X., Yan, Y., Tang, P., Bai, X., Liu, W.: Revisiting multiple instance neural networks. Pattern Recogn. 74, 15–24 (2018)
Xiong, R., et al.: On layer normalization in the transformer architecture. In: International Conference on Machine Learning, pp. 10524–10533. PMLR (2020)
Yan, Y., Wang, X., Guo, X., Fang, J., Liu, W., Huang, J.: Deep multi-instance learning with dynamic pooling. In: Asian Conference on Machine Learning, pp. 662–677. PMLR (2018)
Yao, J., Zhu, X., Huang, J.: Deep multi-instance learning for survival prediction from whole slide images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 496–504. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_55
Ying, C., et al.: Do transformers really perform bad for graph representation? arXiv preprint arXiv:2106.05234 (2021)
Yuan, L., et al.: Tokens-to-token vit: training vision transformers from scratch on imagenet. arXiv preprint arXiv:2101.11986 (2021)
Zhou, Y., Onder, O.F., Dou, Q., Tsougenis, E., Chen, H., Heng, P.-A.: CIA-Net: robust nuclei instance segmentation with contour-aware information aggregation. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 682–693. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_53
Zhou, Y., Sun, X., Liu, D., Zha, Z., Zeng, W.: Adaptive pooling in multi-instance learning for web video annotation. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 318–327 (2017)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhao, Y. et al. (2022). SETMIL: Spatial Encoding Transformer-Based Multiple Instance Learning for Pathological Image Analysis. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13432. Springer, Cham. https://doi.org/10.1007/978-3-031-16434-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-16434-7_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16433-0
Online ISBN: 978-3-031-16434-7
eBook Packages: Computer ScienceComputer Science (R0)