Nothing Special   »   [go: up one dir, main page]

Skip to main content

Unsupervised Lesion-Aware Transfer Learning for Diabetic Retinopathy Grading in Ultra-Wide-Field Fundus Photography

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Ultra-wide-field (UWF) fundus photography is a new imaging technique with providing a broader field of view images, and it has become a popular and effective tool for the screening and diagnosis for many eye diseases, such as diabetic retinopathy (DR). However, it is practically challenging to train a robust deep learning model for DR grading in UWF images, due to the limited scale of data and manual annotations. By contrast, we may find large-scale high-quality regular color fundus photography datasets in the research community, with either image-level or pixel-level annotation. In consequence, we propose an Unsupervised Lesion-aware TRAnsfer learning framework (ULTRA) for DR grading in UWF images, by leveraging a large amount of publicly well-annotated regular color fundus images. Inspired by the clinical identification of DR severity, i.e., the decision making process of ophthalmologists based on the type and number of associated lesions, we design an adversarial lesion map generator to provide the auxiliary lesion information for DR grading. A Lesion External Attention Module (LEAM) is introduced to integrate the lesion feature into the model, allowing a relative explainable DR grading. Extensive experimental results show the proposed method is superior to the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yong, J.K., Kim, B.H., Bo, M.C., Sun, H.J., Choi, K.S.: Bariatric surgery is associated with less progression of diabetic retinopathy: a systematic review and meta-analysis. Surg. Obes. Relat. Dis. 13(2), 352 (2017)

    Article  Google Scholar 

  2. Chilamkurthy, S., et al.: Development and validation of deep learning algorithms for detection of critical findings in head CT scans (2018)

    Google Scholar 

  3. Ju, L., Wang, X., Zhou, Q., Zhu, H., Ge, Z.: Bridge the domain gap between ultra-wide-field and traditional fundus images via adversarial domain adaptation (2020)

    Google Scholar 

  4. Zhao, Y., et al.: Uniqueness-driven saliency analysis for automated lesion detection with applications to retinal diseases. In: Frangi, A.F., et al. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 109–118. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_13

  5. Ting, D., et al.: Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. Jama 318(22), 2211 (2017)

    Google Scholar 

  6. Sayres, R., et al.: Using a deep learning algorithm and integrated gradients explanation to assist grading for diabetic retinopathy. Ophthalmology (2018)

    Google Scholar 

  7. Foo, A., Hsu, W., Lee, M.L., Lim, G., Wong, T.Y.: Multi-task learning for diabetic retinopathy grading and lesion segmentation. Proc. AAAI Conf. Artif. Intell. 34(8), 13267–13272 (2020)

    Google Scholar 

  8. Sun, R., Li, Y., Zhang, T., Mao, Z., Wu, F., Zhang, Y.: Lesion-aware transformers for diabetic retinopathy grading. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10938–10947 (2021)

    Google Scholar 

  9. Nagasato, D., et al.: Deep neural network-based method for detecting central retinal vein occlusion using ultrawide-field fundus ophthalmoscopy. J. Ophthalmol. 2018, 1–6 (2018)

    Google Scholar 

  10. Daisuke, N., Hitoshi, T., Hideharu, O., Hiroki, M., Hiroki, E.: Deep-learning classifier with ultrawide-field fundus ophthalmoscopy for detecting branch retinal vein occlusion. Int. J. Ophthalmol. 12(1), 6 (2019)

    Google Scholar 

  11. Ohsugi, H., Tabuchi, H., Enno, H., Ishitobi, N.: Accuracy of deep learning, a machine-learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting rhegmatogenous retinal detachment. Sci. Rep. 7, 9425 (2017)

    Article  Google Scholar 

  12. Singh, R.P., et al.: Protecting vision in patients with diabetes with ultra-widefield imaging: a review of current literature. Ophthal. Surg. Lasers Imag. Retina 50(10), 639–648 (2019)

    Google Scholar 

  13. Ju, L., Wang, X., Zhao, X., Bonnington, P., Drummond, T., Ge, Z.: Leveraging regular fundus images for training UWF fundus diagnosis models via adversarial learning and pseudo-labeling. IEEE Trans. Med. Imaging (2021)

    Google Scholar 

  14. Nagasawa, T., et al.: Accuracy of ultrawide-field fundus ophthalmoscopy-assisted deep learning for detecting treatment-naïve proliferative diabetic retinopathy. Int. Ophthalmol. 39(10), 2153–2159 (2019). https://doi.org/10.1007/s10792-019-01074-z

  15. Xie, H., et al.: Cross-attention multi-branch network for fundus diseases classification using SLO images. Med. Image Anal. 71, 102031 (2021)

    Google Scholar 

  16. Graham, B.: Kaggle Diabetic Retinopathy Detection Competition Report. University of Warwick (2015)

    Google Scholar 

  17. Porwal, P., et al.: Indian diabetic retinopathy image dataset (IDRID): a database for diabetic retinopathy screening research. Data 3(3), 25 (2018)

    Google Scholar 

  18. Long, M., Wang, J., Ding, G., Sun, J., Yu, P.S.: Transfer feature learning with joint distribution adaptation. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2013)

    Google Scholar 

  19. Wang, P., Lu, L., Li, J., Gan, W.: Transfer learning with joint distribution adaptation and maximum margin criterion (2018)

    Google Scholar 

  20. Xiao, N., Zhang, L.: Dynamic weighted learning for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15242–15251 (2021)

    Google Scholar 

  21. Abdelmaksoud, E., El-Sappagh, S., Barakat, S., Abuhmed, T., Elmogy, M.: Automatic diabetic retinopathy grading system based on detecting multiple retinal lesions. IEEE Access 9, 15939–15960 (2021)

    Article  Google Scholar 

  22. Zhou, Y., et al.: Collaborative learning of semi-supervised segmentation and classification for medical images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2079–2088 (2019)

    Google Scholar 

  23. Grinsven, M.V., Ginneken, B.V., Hoyng, C., Theelen, T., Sanchez, C.: Fast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus images. IEEE Transactions on Medical Imaging, pp. 1273–1284 (2016)

    Google Scholar 

  24. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  25. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  26. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: International Conference on Machine Learning, PMLR, pp. 1180–1189 (2015)

    Google Scholar 

  27. Tsai, Y.H., Hung, W.C., Schulter, S., Sohn, K., Yang, M.H., Chandraker, M.: Learning to adapt structured output space for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7472–7481 (2018)

    Google Scholar 

  28. Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27 (2014)

    Google Scholar 

  29. Kamnitsas, K., et al.: Unsupervised domain adaptation in brain lesion segmentation with adversarial networks. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 597–609. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_47

  30. Fu, J., et al.: Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3146–3154 (2019)

    Google Scholar 

  31. Bousmalis, K., Trigeorgis, G., Silberman, N., Krishnan, D., Erhan, D.: Domain separation networks (2016)

    Google Scholar 

  32. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation (2017)

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by the National Science Foundation Program of China (62103398), Zhejiang Provincial Natural Science Foundation of China (LR22F020008), in part by the Youth Innovation Promotion Association CAS (2021298), in part by the Ningbo major science and technology task project (2021Z054) and the AME Programmatic Fund (A20H4b0141).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yitian Zhao or Jiong Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2455 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bai, Y. et al. (2022). Unsupervised Lesion-Aware Transfer Learning for Diabetic Retinopathy Grading in Ultra-Wide-Field Fundus Photography. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13432. Springer, Cham. https://doi.org/10.1007/978-3-031-16434-7_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16434-7_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16433-0

  • Online ISBN: 978-3-031-16434-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics